MIT OpenCourseWare http://ocw.mit.edu

9.01 Introduction to Neuroscience Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

9.01 Monday Recitation October 22, 2007

Vision

http://www.brown.edu/Courses/BN01/images/review/vision1.pdf http://www.brown.edu/Courses/BN01/images/review/vision2.pdf http://www.brown.edu/Courses/BN01/images/review/vision3.pdf

Eye

- Photoreceptors hyperpolarize in response to light; depolarize (release glutamate) when dark
- Bipolar cells (retinal processing)
 - OFF bipolar cells (respond to glutamate by depolarizing; glutamate-gated cation channels)
 - ON bipolar cells (respond to glutamate by hyperpolarizing; G-protein-coupled receptors)
 - Center-surround receptive fields
- Ganglion cells (retinal output)
 - Also center-surround; receive input from corresponding type of bipolar cell
 - Mainly responsive to differences in illumination
 - o Types: P-type (small, 90%), M-type (large, 5%), nonM-nonP (5%)
 - Color opponency

Optic Nerve, Chiasm, Tract

- At chiasm, axons from nasal retinas **decussate**; result: left visual field information carried by right optic tract; right visual field information carried by left optic tract
- What parts of your vision is lost when
 - Left optic nerve is cut? Input from right eye
 - Chiasm is cut down the middle? Peripheral vision
 - Left optic tract is cut? **Right visual field**
- Targets of projection: LGN (thalamus) to striate cortex, hypothalamus, superior colliculus.

Lateral Geniculate Nucleus

- Six layers labeled 1 through 6; most ventral layer is 1
- Retinal information separated by eye and ganglion cell type
 - Ipsilateral axons synapse on LGN layers 2, 3, 5; contralateral axons on 1, 4, 6
 - Magnocellular LGN layers (1 and 2) receive input from M-type ganglion cells; parvocellular LGN layers (3-6) receive input from P-type; and koniocellular layers (lie just ventral to each numbered layer) receive input from non-M-non-P
- Receptive fields on LGH neurons almost identical to those of the ganglion cells that innervate them

Striate Cortex (V1, Area 17, primary visual cortex)

- Retinotopy (2D surface of retina is mapped onto 2D surface of LGN, striate)
 - Mapping of visual field often distorted (greater representation of fovea)
 - Discrete point of light can activate many cells in the retina, more in target structures, because of overlapping receptive fields; activity in cortex is broad distribution with peak at specific retinotopic location
 - Not literal map; no pictures in the brain
- Six layers (I through VI IV divided into A, B, and C IVC into α and β)

- Most axons from LGN terminate in IVC cell type and eye separation maintained in IVC
 - Magnocellular LGN neurons project to IVCα; parvocellular to IVCβ
 - Right, left eye inputs separated via ocular dominance columns (autoradiography)
 - IVC neurons project to II, III, IVB → some information integrated, processed; II and III receive binocular input
- o Koniocellular LGN axons project to II and III
- Radial connections (perpendicularly across all layers) vs. horizontal (within one layer)
- Outputs (II, III, IVB → cortical areas; V → superior colliculus, pons; VI → back to LGN)
- Blobs (seen with **cytochrome oxidase**) run along II, III, V, VI; interblobs (between blobs) receives input from koniocellular layers of LGN
- Receptive fields
 - o Binocularity
 - o Orientation selectivity
 - Direction selectivity
 - Simple and complex receptive fields
 - Blob receptive fields

Beyond Striate Cortex

- Dorsal stream ("where" pathway)
 - Motion processing
 - o Area MT
- Ventral stream ("what" pathway)
 - o Area V4
 - o Area IT

Practice Short Answer: What is meant by parallel processing in the visual system? Give examples.

Parallel processing is the ability of the brain to process incoming stimuli simultaneously in different ways. This is especially important in vision.

A few examples of parallel processing in vision:

- Two eyes
- ON and OFF bipolar cells
- M- and P-type ganglion cells
- Dorsal and ventral streams
- Etc.