9.14 Worksheets

Courtesy of MIT Press. Used with permission. Schneider, G. E. *Brain structure and its origins: In the Development and in Evolution of Behavior and the Mind*. MIT Press, 2014. ISBN: 9780262026734. The thickening embryonic neural tube

- a. Endbrain (telencephalon) Forebrain
- **b. 'Tweenbrain** (diencephalon) (prosencephalon)
- c. Midbrain (mesencephalon)
- d. Hindbrain (rhombencephalon)
- e. Spinal cord

a

The thickening embryonic neural tube

2 Synapses: varied structural arrangements: Consider the functional possibilities

- 1. Axo-somatic
- Axo-dendritic
 (to dendritic shaft or _ dendritic spine)

Courtesy of MIT Press.Used with permission. Schneider, G. E. Brain structure and its origins: in the development and in evolution of behavior and the mind. MIT Press, 2014. ISBN:9780262026734.

Fig 1-13a

Synapses: varied structural arrangements: Consider the functional possibilities

- 6. Serial synapses Gating mechanisms...
- 7. Synapses without a postsynaptic site (not illustrated)

Courtesy of MIT Press.Used with permission.

Schneider, G. E. Brain structure and its origins: in the development and in evolution of behavior and the mind. MIT Press, 2014. ISBN:9780262026734.

Fig 1-13c

Synapses: varied structural arrangements: Consider the functional possibilities

- **3. Axo-axonal** *Presynaptic inhibition and facilitation*
- 4. (Also: dendro-dendritic, dendro-axonal...)
- 5. Reciprocal synapses

Courtesy of MIT Press.Used with permission.

Hamster Brain (similar to rat)

Courtesy of MIT Press.Used with permission. Schneider, G. E. Brain structure and its origins: in the development and in evolution of behavior and the mind. MIT Press, 2014. ISBN:9780262026734.

Adult

7

Fig.1-5

Hamster Brain (similar to rat)

Courtesy of MIT Press.Used with permission. Schneider, G. E. Brain structure and its origins: in the development and in evolution of behavior and the mind. MIT Press, 2014. ISBN:9780262026734.

Adult

5

6

Study the names of these subdivisions. Learn which is which.

Schematic of premammalian brain

Courtesy of MIT Press.Used with permission.

Sketch of a pre-mammalian brain

Z Locate a local reflex channel. What function might such a pathway serve?

8 Mammalian brain diagrams **Schematic** side view Top view, embryonic brain (with spinothalamic tract)

8 Mammalian brain diagrams

Schematic side view

Top view, embryonic brain (with dorsal root axon)

Courtesy of MIT Press.Used with permission.

Mammalian brain diagrams

Schematic side view

Courtesy of MIT Press.Used with permission. Schneider, G. E. Brain structure and its origins: in the development and in evolution of behavior and the mind. MIT Press, 2014. ISBN:9780262026734.

Top view, embryonic brain (with dorsal root axon)

9 <u>Closure of neural tube with formation of sympathetic ganglia:</u> *Learn the terms!* ← Ectoderm

Courtesy of MIT Press.Used with permission.

Courtesy of MIT Press.Used with permission.

REVIEW

Some neurodevelopment terms to be familiar with

- ectoderm (vs. mesoderm and endoderm),
- ventricular layer, intermediate layer, marginal layer (= matrix layer, mantle layer, zonal layer)
- modes of migration,
 - radial glia (radial astrocytes),
 - ependyma,
- sulcus limitans, separating alar and basal plates,
- neural crest,
- dorsal and ventral roots and rootlets.

See Nauta & Feirtag, ch.10, and other texts

Internal structure of spinal cord: **Note the lateral horn**

Image by MIT OpenCourseWare.

11

Termination of dorsal root fibers

Figures removed due to copyright restrictions.

Please see course textbook or: Rexed, Bror. "A Cytoarchitectonic Atlas of the Spinal Coed in the Cat." *Journal of Comparative Neurology* 100, no. 2 (1954): 297-379.

Adult spinal cord, schematic frontal section: reflex and lemniscal channels

12

12 Adult spinal cord, schematic frontal section: reflex and lemniscal channels

13

Image by MIT OpenCourseWare.

Fig 9-9 Clarke's Column and dorsal spino-cerebellar tract

Corticospinal axons, uncrossed (variable in quantity)

Sympathetic nervous system axons, schematic section of spinal cord, thoracic level

Courtesy of MIT Press.Used with permission.

17

Courtesy of MIT Press.Used with permission.

<u>17</u>

Courtesy of MIT Press.Used with permission.

Meninges & Glia

Satellite oligodendrocytes (oligodendroglia)

19

19 Meninges & Glia (Identify structures indicated)

Courtesy of MIT Press.Used with permission.

Schneider, G. E. Brain structure and its origins: in the development and in evolution of behavior and the mind. MIT Press, 2014. ISBN:9780262026734. C.

Basic subdivisions, embryonic neural tube:

Where is the rhombus? What is it?

- a. Endbrain (telencephalon)
- b. 'Tweenbrain (diencephalon)
- c. Midbrain (mesencephalon)

d. Hindbrain (rhombencephalon

Spinal cord

Forebrain (prosencephalon)

> Reminder: Students should understand and know this figure!

<u>21</u> Embyonic spinal cord & hindbrain compared: identify the indicated structures

22 Notes on hindbrain origins: *definitions*

- Segmentation above the segments of the spinal cord: The somitomeres & branchial arches in the mesoderm, and the rhombomeres of the CNS
- See Nauta & Feirtag, ch.11, p. 170, on the "branchial motor column" -- in addition to the somatic and visceral motor columns.

Columns in spinal cord

Courtesy of MIT Press.Used with permission.
24 Adult caudal hindbrain of mammal

principle cell columns and fiber tracts (schematic)

Courtesy of MIT Press.Used with permission.

25

Evolution of Brain 4

Expansion of midbrain with

evolution of distance-receptor senses: visual and auditory, receptors with advantages over olfaction for speed and sensory acuity, for early warning and for anticipation of events.

Motor side: 1) escape locomotion; 2) turning of head and eyes with modulation by motivational states, including those triggered by olfactory sense.

26 Review of earlier figure: Note the pathway from neocortex to cerebellum

Terms:

- 1. Dorsal columns
- 2. Nuclei of the dorsal columns
- 3. Medial lemniscus
- 4. Ventrobasal nucleus of thalamus (n. ventralis posterior)
- 5. Thalamocortical axon in the "internal capsule"
- 6. Corticofugal axons, including corticospinal components. Called "pyramidal tract" in hindbrain below pons.
 - Pons

27 Frontal section, middle of mammalian midbrain:

Ventral Tegmental Area

27 Frontal section, middle of mammalian midbrain: Identify the indicated structures

Courtesy of MIT Press.Used with permission.

Midbrain Locomotor Region (MLR):

Localization in cat by electrical stimulation studies

Courtesy of MIT Press.Used with permission. Schneider, G. E. Brain structure and its origins: in the development and in evolution of behavior and the mind. MIT Press, 2014. ISBN:9780262026734.

> **Th** = thalamus **M** = mammillary body **NR** = nuc. ruber (red nuc.) **LL** = lateral lemniscus **III** = oculomotor nerve $\mathbf{P} = \text{pons}$ **SC** = superior colliculus

- **BC** = brachium conjunctivum
 - (axons from cb)
- (auditory)

Fig 14-1

28

Midbrain neurons projecting to spinal cord and hindbrain for motor control

Superior Colliculus (optic tectum)

Courtesy of MIT Press.Used with permission.

29

30 Midbrain areas that influence moods and motivational states:

Ventral Tegmental Area (VTA)

Courtesy of MIT Press.Used with permission. Schneider, G. E. Brain structure and its origins: in the development and in evolution of behavior and the mind. MIT Press, 2014. ISBN:9780262026734.

Connections to the CGA, also called the Periaquaductal Gray (PAG), and to the VTA enabled control of or influence on moods/motivations crucial for survival: **defensive, aggressive, sexual**. Activation of these areas is accompanied by **feelings of pain (CGA) or pleasure (VTA)**.

31 Midbrain: Species comparisons

Note the great differences in the size of the cerebral peduncles at the base of the brain

> (Sections are not drawn to the same scale)

Rodent

Human

Tree Shrew (Squirrel is similar)

Rostral end of the thickening neural tube in mammals: descriptive terms

32 Rostral end of the thickening neural tube in mammals: identify the abbreviations shown

Fig 12-6

The lateral forebrain bundle:

major origins and course

Note the different names at different levels. All these names occur frequently in discussions of brain structure and connections

Endbrain (telencephalon)

'Tweenbrain (diencephalon)

Midbrain (mesencephalon)

- Hindbrain (rhombencephalon)
- Spinal cord e.

Cortical white matter to Internal capsule

Cerebral peduncles (includes fibers to 'tweenbrain, midbrain, pons, remainder of hindbrain, spinal cord)

Pyramidal tract

Corticospinal tract

48

Courtesy of MIT Press.Used with permission.

Other "limbic" (border, fringe) cortex

Courtesy of MIT Press.Used with permission.

Check your knowledge of brain structures: Neuroanatomy review

- Subdivisions of CNS; definitions of cell types
 - Shapes of the neural tube at various levels
- Sensory channels of conduction; dermatomes
- Diaschisis: lesion-produced deafferentation causes a functional depression of neurons
- Evolution of neocortex with major ascending and descending pathways to it and from it
- Spinal cord structure; differences between levels
- Propriospinal system
- Autonomic N.S. and its components
- Hindbrain organization; distortions of the basic plan
- Cranial nerves: the 5th (trigeminal nerve)

Neuroanatomy review continued

- Midbrain: tectum and tegmentum; species differences; outputs for three major types of movement
- Diencephalon: two major and two additional subdivisions (functional/structural)
- Telencephalon: the endbrain (cerebral hemispheres and basal forebrain); origins of two major pathways for descending axons (Both contain some ascending axons also.)
- Some major axonal pathways in mammals:
 - Spinoreticular, trigeminoreticular tracts (mostly ipsilateral)
 - *Spinothalamic tract*; longest axons reach the ventrobasal nuc. of thalamus (VB = VPM and VPL)
 - Dorsal columns, connecting to the medial lemniscus pathway, which projects to the ventrobasal nuc. of thalamus
 - Corticospinal & corticopontine pathways (the former connect to all levels of CNS, the latter connecting to the pons, hence to cerebellum)

1) Embryonic brain with curved longitudinal axis

Neuromeric models of embryonic mammalian brain

Image by MIT OpenCourseWare.

9.14 Brain Structure and Its Origins Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.