MIT OpenCourseWare http://ocw.mit.edu

9.35 Sensation And Perception Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Auditory Scene Analysis

Kimo Johnson April 23, 2009

Auditory scene analysis

- Source segregation
 - Spatial separation
 - Spectral and temporal qualities
- Stream segregation
 - proximity: frequency or time
 - continuity: follow trajectory
 - similarity: frequency, timbre, intensity
 - symmetry and closure

Single sound organization

Figure by MIT OpenCourseWare.

Old-plus-new heuristic

Figures removed due to copyright restrictions.

Auditory stream

Figures removed due to copyright restrictions.

Stream segregation

- Proximity
- Continuity
- Similarity
- Symmetry and closure

Multiple sounds

Figure by MIT OpenCourseWare.

adapted from Handel figure 7.4

Multiple sound organization

- Tone sequences
 - Vary parameters to cause perception of subsequences
- Conflicting organizations
 - Ambiguous sequences that put strategies in conflict

Proximity

Figure by MIT OpenCourseWare.

Results

Figure by MIT OpenCourseWare.

from van Noorden, 1975

J.S. Bach

Toccata and Fugue in D Minor ~1700

J.S. Bach

Toccata and Fugue in D Minor ~1700

Figure by MIT OpenCourseWare.

Similarity

• Sounds are grouped by timbre

Similarity

• Sounds are grouped by timbre

Example

from Music, Cognition, and Computerized Sound, ed. Perry Cook

Competing organizations

Figure by MIT OpenCourseWare.

Bregman and Pinker, 1978

Scale illusion

• Deutsch, 1975

Figure by MIT OpenCourseWare.

Scale illusion

• Deutsch, 1975

Figure by MIT OpenCourseWare.

Demo

Scale illusion

• Deutsch, 1975

Figure by MIT OpenCourseWare.

Figure by MIT OpenCourseWare.

Continuity

Figure by MIT OpenCourseWare.

Kluender and Jenison 1992 - glides

Continuity

 \wedge

 \bigvee

 \bigwedge

adapted from Bregman, 1990

adapted from Bregman, 1990

Restoration

- Sasaki (1980) familiar piano melodies
- Warren and Sherman (1974)
 - the *eel fell off the car
 - The *eal fell off the table

Frequency Graphs

Figures removed due to copyright restrictions.

Melodies

Diana Deutsch, 1972

Melodies

Diana Deutsch, 1972

melody I

Melodies

Diana Deutsch, 1972

melody I

melody 2

Music

Music

guitar and sax

Music and Speech Perception

Kimo Johnson April 29, 2008

Linguistic universals

- Discreteness
- Semanticity
- Arbitrariness
- Openness
- Duality of patterning

Hockett, 1963

Music grammars

- Discreteness: N pitches per octave
- Semanticity: scales, chords, keys
- Arbitrariness
- Openness
- Duality

Octave

- Frequency ratio 2:1
- Greatest number of identical overtones
- First overtone is 2 : I

Sensory dissonance

Figure by MIT OpenCourseWare.

Plomp and Levelt, 1965

Local consonance

Figure by MIT OpenCourseWare.

Pythagorean comma

Pythagorean comma

Pythagorean tuning

С	C#	D	Eb	Ε	F	F #	G	G#	Α	Bb	В
/	256/	9/	32/	81/	4/	729/	3/	128/	27/	16/	243/
	243	8	27	64	3	512	2	81	16	9	128

C: E =
$$81/64$$
 = 1.2656
C: E = $5/4$ = 1.25

C: Eb =
$$32/27$$
 = 1.1852
C: Eb = $6/5$ = 1.20

C# : F# = $1.3515 \neq 1.333$

Pythagorean tuning

С	C#	D	Eb	Ε	F	F #	G	G#	Α	Bb	В
1/	256/	9/	32/	81/	4/	729/	3/	128/	27/	16/	243/
	243	8	27	64	3	512	2	81	16	9	128

C: E =
$$81/64$$
 = 1.2656
C: E = $5/4$ = 1.25

C: Eb = 32/27 = 1.1852 wolf C: Eb = 6/5 = 1.20

C# : F# = $1.3515 \neq 1.333$

Other tuning systems

- Just diatonic
- Meantone (1400)
- Well-temperaments
 - Werckmeister (1645-1706)
 - Young (1773-1829)
- Equal temperament (~1900)

Optimal well-temperament

Figure by MIT OpenCourseWare.

Polansky et. al, 2008