
Compression in Bayes nets
• A Bayes net compresses the joint 

probability distribution over a set of 
variables in two ways:
– Dependency structure
– Parameterization

• Both kinds of compression derive from 
causal structure:
– Causal locality
– Independent causal mechanisms
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Parameterization

Burglary

Alarm

Earthquake

JohnCalls MaryCalls

P(B)
0.001

P(E)
0.002

B    E     P(A|B,E)
0     0      0.001
0     1      0.29
1     0      0.94
1     1      0.95

A     P(J|A)
0     0.05
1     0.90

A    P(M|A)
0     0.01
1     0.70

Full CPT
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Outline

• The semantics of Bayes nets
– role of causality in structural compression

• Explaining away revisited
– role of causality in probabilistic inference

• Sampling algorithms for approximate 
inference in graphical models



Outline

• The semantics of Bayes nets
– role of causality in structural compression

• Explaining away revisited
– role of causality in probabilistic inference

• Sampling algorithms for approximate 
inference in graphical models
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Joint probability distribution factorizes into product 
of local conditional probabilities:
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JohnCalls MaryCalls

Necessary to assign a probability to any possible world, e.g.
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Local semantics
Global factorization is equivalent to a set of constraints 
on pairwise relationships between variables. 

“Markov property”: Each node is conditionally 
independent of its non-descendants given its parents.   
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Local semantics
Global factorization is equivalent to a set of constraints 
on pairwise relationships between variables. 

“Markov property”: Each node is conditionally 
independent of its non-descendants given its parents. 

Also: Each node is marginally 
(a priori) independent of any 
non-descendant unless they 
share a common ancestor.
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Local semantics
Global factorization is equivalent to a set of constraints 
on pairwise relationships between variables. 

Each node is conditionally independent of all others 
given its “Markov blanket”: parents, children, 
children’s parents. 

Figure by MIT OCW.
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Example
Burglary

Alarm

Earthquake

JohnCalls MaryCalls

JohnCalls and MaryCalls are marginally (a priori) dependent, but 
conditionally independent given Alarm.  [“Common cause”]

Burglary and Earthquake are marginally (a priori) independent, 
but conditionally dependent given Alarm. [“Common effect”]



Constructing a Bayes net

• Model reduces all pairwise dependence and 
independence relations down to a basic set 
of pairwise dependencies: graph edges. 

• An analogy to learning kinship relations
– Many possible bases, some better than others
– A basis corresponding to direct causal 

mechanisms seems to compress best. 



An alternative basis
Suppose we get the direction of causality wrong...

Burglary

Alarm

Earthquake

JohnCalls MaryCalls

• Does not capture the dependence between callers: 
falsely believes P(JohnCalls, MaryCalls) = 
P(JohnCalls) P(MaryCalls).



An alternative basis
Suppose we get the direction of causality wrong...

Burglary

Alarm

Earthquake

JohnCalls MaryCalls

• Inserting a new arrow captures this correlation.
• This model is too complex: does not believe that 

P(JohnCalls, MaryCalls|Alarm) =   
P(JohnCalls|Alarm) P(MaryCalls|Alarm)



An alternative basis
Suppose we get the direction of causality wrong...

Burglary

Alarm

Earthquake

JohnCalls MaryCalls

• Does not capture conditional dependence of causes 
(“explaining away”): falsely believes that 
P(Burglary, Earthquake|Alarm) =   

P(Burglary|Alarm) P(Earthquake|Alarm)



An alternative basis
Suppose we get the direction of causality wrong...

Burglary

Alarm

Earthquake

JohnCalls MaryCalls

• Another new arrow captures this dependence.
• But again too complex: does not believe that  

P(Burglary, Earthquake) = 
P(Burglary)P(Earthquake)



Suppose we get the direction of causality wrong...

Burglary

Alarm

Earthquake

JohnCalls MaryCalls

BillsCalls

PowerSurge

• Adding more causes or effects requires a 
combinatorial proliferation of extra arrows.  Too 
general, not modular, too many parameters….



Constructing a Bayes net

• Model reduces all pairwise dependence and 
independence relations down to a basic set of 
pairwise dependencies: graph edges. 

• An analogy to learning kinship relations
– Many possible bases, some better than others
– A basis corresponding to direct causal 

mechanisms seems to compress best. 

• Finding the minimal dependence structure 
suggests a basis for learning causal models.



Outline

• The semantics of Bayes nets
– role of causality in structural compression

• Explaining away revisited
– role of causality in probabilistic inference

• Sampling algorithms for approximate 
inference in graphical models



Explaining away

• Logical OR: Independent deterministic causes
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Explaining away

• Logical OR: Independent deterministic causes
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0     1      1
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A priori, no correlation between B and E:
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Explaining away

• Logical OR: Independent deterministic causes
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May be a big increase if P(a) is small.



Explaining away

• Logical OR: Independent deterministic causes
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Explaining away

• Logical OR: Independent deterministic causes

Burglary

Alarm

Earthquake B    E     P(A|B,E)
0     0      0
0     1      1
1     0      1
1     1      1

After observing A = a, E= e, … 
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Explaining away

• Logical OR: Independent deterministic causes

Burglary

Alarm

Earthquake B    E     P(A|B,E)
0     0      0
0     1      1
1     0      1
1     1      1

After observing A = a, E= e, … 
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Explaining away

• Depends on the functional form (the 
parameterization) of the CPT
– OR or Noisy-OR: Discounting
– AND: No Discounting 
– Logistic: Discounting from parents with 

positive weight; augmenting from parents with 
negative weight.

– Generic CPT:  Parents become dependent when 
conditioning on a common child.



Parameterizing the CPT

• Logistic: Independent probabilistic causes 
with varying strengths wi and a threshold θ

Child 1 upset

Parent upset

Child 2 upset C1   C2     P(Pa|C1,C2)
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Threshold θ



Contrast w/ conditional reasoning
Rain

Grass Wet

Sprinkler

• Formulate IF-THEN rules:
– IF Rain THEN Wet
– IF Wet THEN Rain IF Wet AND NOT Sprinkler

THEN Rain

• Rules do not distinguish directions of inference
• Requires combinatorial explosion of rules



Spreading activation or recurrent 
neural networks
Burglary Earthquake

Alarm

• Observing earthquake, Alarm becomes more active. 
• Observing alarm, Burglary and Earthquake become 

more active.
• Observing alarm and earthquake, Burglary cannot 

become less active.  No explaining away!   

• Excitatory links: Burglary Alarm, Earthquake
Alarm



Spreading activation or recurrent 
neural networks
Burglary Earthquake

Alarm

• Observing alarm, Burglary and Earthquake become 
more active. 

• Observing alarm and earthquake, Burglary becomes 
less active: explaining away.

• Excitatory links: Burglary Alarm, Earthquake
Alarm

• Inhibitory link: Burglar Earthquake



Spreading activation or recurrent 
neural networks

Burglary Power surge
Earthquake

Alarm

• Each new variable requires more inhibitory 
connections.

• Interactions between variables are not causal.
• Not modular.

– Whether a connection exists depends on what other 
connections exist, in non-transparent ways.  

– Combinatorial explosion of connections



The relation between PDP and 
Bayes nets

• To what extent does Bayes net inference 
capture insights of the PDP approach?

• To what extent do PDP networks capture or 
approximate Bayes nets? 



Summary

Bayes nets, or directed graphical models, offer 
a powerful representation for large 
probability distributions:
– Ensure tractable storage, inference, and 

learning
– Capture causal structure in the world and 

canonical patterns of causal reasoning. 
– This combination is not a coincidence.



Still to come
• Applications to models of categorization
• More on the relation between causality and 

probability: 

• Learning causal graph structures.
• Learning causal abstractions (“diseases 

cause symptoms”)
• What’s missing from graphical models

Causal structure

Statistical dependencies



Outline

• The semantics of Bayes nets
– role of causality in structural compression

• Explaining away revisited
– role of causality in probabilistic inference

• Sampling algorithms for approximate 
inference in graphical models



Motivation
• What is the problem of inference?  

– Reasoning from observed variables to 
unobserved variables
• Effects to causes (diagnosis):

P(Burglary = 1|JohnCalls = 1, MaryCalls = 0)

• Causes to effects (prediction):
P(JohnCalls = 1|Burglary = 1) 
P(JohnCalls = 0, MaryCalls = 0|Burglary = 1)



Motivation
• What is the problem of inference?  

– Reasoning from observed variables to 
unobserved variables.

– Learning, where hypotheses are 
represented by unobserved variables.
• e.g., Parameter estimation in coin flipping:

d1 d2 d3 d4

P(H) = θθ



Motivation
• What is the problem of inference?  

– Reasoning from observed variables to 
unobserved variables.

– Learning, where hypotheses are 
represented by unobserved variables. 

• Why is it hard?
– In principle, must consider all possible 

states of all variables connecting input 
and output variables.



A more complex system
Battery

• Joint distribution sufficient for any inference:

Radio Ignition Gas
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A more complex system
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A more complex system
Battery

• Joint distribution sufficient for any inference:

Radio Ignition Gas

Starts

On time to work
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A more complex system
Battery

• Joint distribution sufficient for any inference:

• Exact inference algorithms via local computations
– for graphs without loops: belief propagation 
– in general: variable elimination or junction tree, but these   

will still take exponential time for complex graphs.

Radio Ignition Gas

Starts

On time to work
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Sampling possible worlds
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As the sample gets larger, 
the frequency of each
possible world approaches
its true prior probability
under the model.

How do we use these 
samples for inference?
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Summary
• Exact inference methods do not scale well to 

large, complex networks
• Sampling-based approximation algorithms can 

solve inference and learning problems in arbitrary 
networks, and may have some cognitive reality. 
– Rejection sampling, Likelihood weighting

• Cognitive correlate: imagining possible worlds

– Gibbs sampling
• Neural correlate: Parallel local message-passing 

dynamical system
• Cognitive correlate: “Two steps forward, one step 

back” model of cognitive development
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