
Where we’ve been, where we’re going

• Two classes ago: classic model of learning 
concepts based on combinations of features.
– [Is it really learning? Fodor’s challenge.]
– Theories of when learning is possible:

• Identifiability in the limit: Subset principle
• PAC: The importance of choosing a good 

representation -- choosing good features (c.f., 
Goodman, sinusoidal interpolation, etc.) 



Where we’ve been, where we’re going

• Last class (TA): 
– Varieties of representations: 

• Features
• Multidimensional vector spaces
• Trees (hierarchically nested features/classes)

– How does a learner construct good 
representations?  A cognitive modeler?

– Algorithms for compression on similarities or 
coarse features dimensions.  

• Multidimensional scaling / PCA
• Hierarchical clustering
• Additive clustering



Where we’ve been, where we’re going

• For this week:
– “Structured” representations: 

• Grammars
• First-order logic

– What do structured representations offer?
• How different from “unstructured” reps?
• What is the evidence that human cognition uses 

structured representations?

– How are structured representations constructed?
• Compression algorithms for inducing grammars and 

first-order logical theories.
• An answer to Fodor’s challenge?



Where we’ve been, where we’re going
• Next few weeks:

– Learning and inference with probabilistic models.       
– Applications to categorization, unsupervised learning, 

semi-supervised learning. 

• Then:
– Causal models for categorization, learning and 

reasoning.

• After that:
– Integrating probabilistic learning and inference with 

structured representations.
– Applications to modeling intuitive theories of biology, 

physics, psychology.



Outline for today

• PAC learning analyses, and the importance 
of choosing good features.

• Grammars
• First-order logic
• Learning a theory and new concepts in first-

order logic. 



Computational analysis
• Can learning succeed under weaker 

conditions?  PAC.
– The true concept is not in the hypothesis space.
– We are not willing to wait for infinite data, but 

we can live with a nonzero error rate.

• What can we say about more complex cases 
of learning?
– Richer hypothesis spaces?
– More powerful learning algorithms?



Probably Approximately Correct (PAC)

• The intuition: Want to be confident that a 
hypothesis which looks good on the training 
examples (i.e., appears to have zero error rate) in 
fact has a low true error rate (ε), and thus will 
generalize well on the test instances. 

• Note we do not require that the true rule is in the 
hypothesis space, or that if it is, we must find it. 
We are willing to live with a low but nonzero error 
rate, as long as we can be pretty sure that it is low.



Probably Approximately Correct (PAC)
• Assumption of “uniformity of nature”: 

– Training and test instances drawn from some 
fixed probability distribution on the space X.

Target concept h*
Hypothesis h

Error region h⊕h* = union - intersection
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Probably Approximately Correct (PAC)
• Assumption of “uniformity of nature”: 

– Training and test instances drawn from some 
fixed probability distribution on the space X.

Target concept h*
Hypothesis h

Error rate ε = probability of drawing from these regions 
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Probably Approximately Correct (PAC)
• The intuition: Want to be confident that a 

hypothesis which looks good on the training 
examples (i.e., appears to have zero error rate) in 
fact has a low true error rate (ε), and thus will 
generalize well on the test instances. 

• PAC theorem: With probability 1-δ, a hypothesis 
consistent with N training examples will have true 
error rate at most ε whenever
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Probably Approximately Correct (PAC)
• PAC theorem: With probability 1-δ, a hypothesis 

consistent with N training examples will have true 
error rate at most ε whenever

• How does N, the amount of data required for good 
generalization, change with problem parameters?
– As allowable error (ε) decreases, N increases.
– As desired confidence (1-δ) increases, N increases.
– As the size of the hypothesis space (log |H|) increases, 

N increases.  
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Implications for what makes a good 
hypothesis space or inductive bias. 



Probably Approximately Correct (PAC)
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Why does N depend on number of hypotheses, |H|? 
– Consider the set of “bad” hypotheses, Hbad: hypotheses 

with true error rate greater than or equal to ε.
– We want to be confident that a hypothesis which looks 

good on N examples is not actually in Hbad .
– Each example on average rules out at least a fraction ε 

of the hypotheses in Hbad .  The bigger Hbad is, the more 
examples we need to see to be confident that all bad 
hypotheses have been eliminated. 

– The learner doesn’t know how big Hbad is, but can use 
|H| as an upper bound on |Hbad|.



PAC analyses of other 
hypothesis spaces

• Single features
• Conjunctions
• Disjunctions
• Conjunctions plus k exceptions
• Disjunction of k conjunctive concepts 
• All logically possible Boolean concepts
• Also:

– Regions in Euclidean space: rectangles, polygons, …
– Branches of trees…. 



• Single features:

• Conjunctions:

• Disjunctions:

• Conjunctions plus k exceptions:

• Disjunction of k conjunctive concepts: 

• All logically possible Boolean concepts:

h1: f2
h2: f5

h1: f2 OR f5
h2: f1 OR f2 OR f5

h1: (f1 AND f2) OR (0 1 0 1 1 0)
h2: (f1 AND f2 AND f5) OR (0 1 0 1 1 0) OR (1 1 0 0 0 0)

h1: (f1 AND f2 AND f5) OR (f1 AND f4)
h2: (f1 AND f2) OR (f1 AND f4) OR (f3)

h1: f2 AND f5
h2: f1 AND f2 AND f5

h1: (1 1 1 0 0 0), (1 1 1 0 0 1), (1 1 1 0 1 0), ...
h2: (0 1 0 1 1 0), (1 1 0 0 0 0), (1 0 0 1 1 1), ...



• Single features: 
log |H| = log k (k = # features)

• Conjunctions: 
log |H| = k

• Disjunctions: 
log |H| = k

• Conjunctions plus m exceptions: 
log |H| ~ km

• Disjunction of m conjunctive concepts: 
log |H| ~ km

• All logically possible Boolean concepts:
log |H| = 2^k = number of objects in world.

.
δ
1log

ε
1

⎟
⎠
⎞

⎜
⎝
⎛ +≥ HN



The role of inductive bias
• Inductive bias = constraints on hypotheses. 
• Learning with no bias (i.e., H = all possible 

Boolean concepts) is impossible.
– PAC result
– A simpler argument by induction.



The role of inductive bias
• Inductive bias = constraints on hypotheses. 

• Relation to Ockham’s razor:
– “Given two hypotheses that are both consistent 

with the data, choose the simpler one.”
– log |H| = number of bits needed to specify each 

hypothesis h in H.  Simpler hypotheses have 
fewer alternatives, and shorter descriptions.

– E.g. Avoid disjunctions unless necessary:
“All emeralds are green and less than 1 ft. in 

diameter” vs. “All emeralds are green and less than 
1 ft. in diameter, or made of cheese”. 
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The importance of choosing
good features

• Choose features such that all the concepts we need 
to learn will expressible as simple conjunctions.

• Failing that….  conjunctions with few exceptions, 
or disjunctions of few conjunctive terms.

• If we choose “any old features”, we may express 
any possible concept as some Boolean function of 
those features, but learning will be impossible.  



What this doesn’t tell us
• Why conjunctions easier than disjunctions?

– C.f., Why is “all emeralds are green and less 
than 1 ft. in diameter” better than “all emeralds 
are green or less than 1 ft. in diameter”?

– What are concepts useful for in the real world?
– What is structure of natural categories?  



What this doesn’t tell us
• Why conjunctions easier than disjunctions?
• How we choose the appropriate generality 

of a concept, given one or a few examples?
– Subset principle says to choose a hypothesis 

that is as small as possible.
– Ockham’s razor says to choose a hypothesis 

that is as simple as possible.
– But these are often in conflict, e.g. with 

conjunctions.  People usually choose something 
in between, particularly with just one example.  
Consider word learning …. 



What this doesn’t tell us
• Why conjunctions easier than disjunctions?
• How we choose the appropriate generality 

of a concept, given one or a few examples?
• How we should (or do) handle uncertainty? 

– How confident that we have the correct concept?  
– When to stop learning?  
– What would the best example to look at next?
– What about noise (so that we cannot just look for a 

consistent hypothesis)?

– Should we maintain multiple hypotheses?  How?



What this doesn’t tell us
Compare PAC bounds with typical 

performance in Bruner’s experiments or the 
real world. 
– E.g., need > 200 examples to have 95% 

confidence that error is < 10%
– Bruner experiments: 5-7 examples
– Children learning words:

Images removed due to copyright considerations.



Other learning algorithms
• Current-best-hypothesis search

• Version spaces: 

Images removed due to copyright considerations.

Images removed due to copyright considerations.



Summary: Inductive learning as search
• Rigorous analyses of learnability.

– Explains when and why learning can work.
– Shows clearly the need for inductive bias and gives a 

formal basis for Occam’s razor. 

• Many open questions for computational models of 
human learning, and building more human-like 
machine learning systems.
– Where do the hypothesis spaces come from? Why are 

some kinds of concepts more natural than others?  
– How do we handle uncertainty in learning? 
– How do we learn quickly and reliably with very flexible 

hypothesis spaces? 



Outline for today

• PAC learning analyses, and the importance 
of choosing good features.

• Grammars
• First-order logic
• Learning a theory and new concepts in first-

order logic. 



High-level points

• The basic idea of a grammar: rules for 
generating structures.

• Some lessons for cognition more generally:
– The importance of structured representations. 
– How structure and statistics interact.



What was Chomsky attacking? 

• Models of language as a sequential object.
– E.g., n-th order Markov models: 

– Or, n-grams: 
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P(model, of, language) 

Image removed due to copyright considerations.



P(model, of, quickly) 

Image removed due to copyright considerations.



The classic example where 
frequency fails

• “Colorless green ideas sleep furiously.”
• “Furiously sleep ideas green colorless.”



Image removed due to copyright considerations.
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The new example where 
frequency fails

• “Stupendously beige ideas circumnavigate 
mercilessly.”

Image removed due to copyright considerations.



What is a grammar? 
• A system for representing structures that 

“makes infinite use of finite means” (von 
Humboldt, ~1830’s). 



A grammar is like a theory
“The grammar of a language can be viewed as a theory 
of the structure of this language.  Any scientific theory 
is based on a certain finite set of observations and, by 
establishing general laws stated in terms of certain 
hypothetical constructs, it attempts to account for these 
observations, to show how they are interrelated, and to 
predict an indefinite number of new phenomena….  
Similarly, a grammar is based on a finite number of 
observed sentences… and it ‘projects’ this set to an 
infinite set of grammatical sentences by establishing 
general ‘laws’… [framed in terms of] phonemes, words, 
phrases, and so on.…”

Chomsky (1956), “Three models for the description of language” 



Finite-state grammar

• The “minimal linguistic theory”. 

E.g., “The lucky boy tasted defeat.”
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Generating infinite strings

E.g., “The lucky tired tired … boy tasted defeat.”
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Parses novel sequences

E.g., “Colorless green ideas sleep furiously”
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What’s really wrong

• The problem with the “statistical” models 
isn’t that they are statistical.

• Nature of representation:
– N-grams: Perceptual/motor/superficial/concrete 

• Utterance is a sequence of words.

– Chomsky: Cognitive/conceptual/deep/abstract
• Finite-state grammar: utterance is a sequence of 

states. 
• Phrase-structure grammar: utterance is a 

hierarchical structure of phrases. 



Counterexamples to 
sequential models 

• Center embedding
– The man dies.
– The man that the racoons bite dies.
– The man that the racoons that the dog chases 

bite dies.
– The man that the racoons that the dog that the 

horses kick chases bite dies.



Generating embedded clauses

E.g., “A lucky boy the tired girl saw tasted defeat.”
No way to ensure subject-verb agreement.
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Counterexamples to 
sequential models 

• Tail-embedding
– The horse that kicked the dog that chased the 

racoons that bit the man is alive.
– The horses that kicked the dog that chased the 

racoons that bit the man are alive.

• Fundamental problem: Dependencies may 
be arbitrarily long-range in the sequence of 
words.  Only local in the phrase structure. 
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