
10.34: Numerical Methods Applied to Chemical Engineering
Prof. K. Beers

Solutions to Problem Set 6: Numerical Optimization
Mark Styczynski, Ben Wang

1.(3 points) 5.A.2 Compute the point 2x∈ℜ that minimizes the cost function

() 1
2

F x g x x Hx= ⋅ + ⋅
2

1
g

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦

3 1
1 2

H ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

This is just a simple problem learning how to use fminunc(). All we need to do is code
this function up and call fminunc with a somewhat appropriate initial guess… though
your guess is as good as mine. The result of the code included at the end of this problem
is:

x =

 1.0000
 -1.0000

F =

 -1.5000

Now, compute the constrained minimum subject to 2 2

1 2 1x x+ =

This is the same problem, but you need to use fmincon(), write a nonlinear constraint
function with one equality constraint, and provide the appropriate series of arguments to
fmincon. The result of the code included at the end of this problem is:
x =

 0.7420
 -0.6704

F =

 -1.3766

As we’d expect, the constrained minimum is greater than our (putative) global minimum.

Then, compute the constrained minimum along the unit circle with the additional
requirements that both x1 and x2 be nonnegative.

OK, same cost function, same nonlinear constraint, but also a bound limiting the solution
to the first quadrant of two-dimensional space. All we need to do is add in the
appropriate bounds; note that you can add in lower bounds with no upper bounds, and
Matlab knows exactly what that means. The result of the code included at the end of this
problem is:

x =

 1.0000
 0

F =

 -0.5000

Again, as we’d expect, this further constrained answer is even greater than either of the
previous two.

Here’s the relevant code:

function marksty_P5A2()

clear all; close all;

%PDL> Set an initial guess
x0 = [0; 1];

%PDL> Find unconstrained minimum...
[x, F] = fminunc(@unconFunc,x0)

%PDL> Find first constrained minimum subject to nonlinear constraint.
[x, F] = fmincon(@unconFunc,x0,[],[],[],[],[],[],@nonLinConFunc)

%PDL> Find final constrained minimum with additional bound constraints.
[x, F] = fmincon(@unconFunc,x0,[],[],[],[],[0;0],[],@nonLinConFunc)

end

function F = unconFunc(x)
% This is the basic function we are either finding the unconstrained
% minimum of or will optimize subject to constraints.
g = [-2;1];
H = [3 1; 1 2];
F = dot(g,x) + dot(.5*x,H*x);
end

function [C, Ceq] = nonLinConFunc(x)
% This is the nonlinear constraint function reflecting equation
% 5.175... there and no nonlinear inequalities, though there is
% one nonlinear equality.

% The format it solves for is C <= 0, Ceq = 0.
C = 0;
Ceq = x(1)^2 + x(2)^2 - 1;
end

Grading: We’re mostly just looking for right answers here. If you got the right answers,
you got credit, and each step was worth one point. Otherwise, partial credit was given for
each part attempted.

2. (3 points) 5.B.1 We wish to use the enzyme whose kinetics, described by (5.51), were
studied earlier in this chapter, in an immobilized-enzyme packed bed reactor. Neglecting
any internal mass transfer resistance (we assume the enzyme is immobilized in very small
pellets), we compute the outlet substrate concentration by solving the ODE-IVP

1 2

1s m

c m s si s

dc V c
dW v K c K cα −

⎡ ⎤
= − ⎢ ⎥+ +⎣ ⎦

s () 00s sc W c= =

Cs is the substrate concentration in M, and is constrained to lie in [10-4,2]. W is the mass
of enzyme in the reactor in mg, and we integrate (5.176) to the total mass WR = 1 g. v is
the volumetric flow rate through the reactor in L/min. αc = 106 μmol/mol is a conversion
factor, and the kinetic constants are Vm = 200 μmol/min/mgE, Km = 0.201 M, Ksi =
0.5616 M. Plot the inlet substrate concentration cs0 that maximizes the outlet molar flow
rate of product, as a function of v.

So, there are two approaches here… you can integrate the equation analytically and use
that result, or you can just use the equation with Matlab’s ODE integrator. Since the
latter is less prone to typos and math errors, we’ll stick with that one. So, we assume that
we can integrate this equation easily to the final W of 1 g, or 1000 mg in terms of the
units of Vm. That means we know what cs(W = 1000 mg) is, and so we can “maximize
the outlet molar flow rate of product”. That’s really the most important part of this. We
don’t want to minimize Cs*v, because that could be done by just using the smallest
allowable inlet concentration. What we want to do is maximize (Cx0 – Cs)*v, which will
give us a representation of molar flow rate of product (no matter what the reaction
stoichiometry is). Now, someone pointed out that you should in theory be able to just
maximize (Cx0 – Cs) at any given v, because the v won’t be changed by the minimization
routine. Indeed, this seems like it should be allowable in principle. In fact, though, it
causes some sensitivity to initial guesses at higher flowrates. I’ll get more to this
sensitivity in a second, but the key is that we understand that in our minimization
function, we first integrate the ODE and then return the function that is to be minimized
with the resulting value of the final Cs.

With that, what we need to do is pretty straightforward: just maximize the molar flow rate
of product (as defined above) subject to the constraints. Of course, there was some
confusion about what the constraints should be, but we’ll accept both possibilities: just
constrain Cs0 to be in the range in the problem statement, or define all Cs (including Cs0)
to be in that range. The former is straightforward, since Cs0 is what we are changing to
optimize our function. The latter is a little more difficult, but it only entails integrating
the same ODE as before again, this time in the nonlinear constraint function. It just

increases the time it takes to execute the problem and slightly changes the range of
reliable answers that you can get. This can all be seen in the code included at the end of
this problem.

The final thing to consider is sensitivity to initial guesses and other unusual things…
now, some of you may not have noticed this if your initial guess was two, but if you used
-(Cx0 – Cs)*v as your cost function and did not constrain Cs, then somewhere around
v=0.003, your result is sensitive to your initial guess. This is somewhat unexpected… at
low enough v, you expect everything to react, so you’d think that 2 would be the ideal
answer. This may be something that can be fixed by providing the Jacobian in your
function, but I didn’t bother and don’t mind if you didn’t either.

Next possibility: -(Cx0 – Cs)*v as your cost function and you constrained Cs. In this case,
you will get wild values of Cs0 below about v = 0.03 due to the fact that you’re exceeding
maximum function evaluations. Again, this may be something that can be solved with a
Jacobian, but it’s acceptable to just avoid the problem by looking at an appropriate range
of v.

Final possibility we’ll look at: -(Cx0 – Cs) as your cost function. You’ll see similar issues
on the low scale of v depending on whether or not you constrained Cs0, but in addition
when you get to v of about 600, you’ll see guess dependence… you might think that this
is because there’s just not that much reaction to occur, but the other cost function
converges to the expected result.

So, yeah… those are the ranges of interesting/frustrating results. Jacobians may fix this
stuff, but as I pointed out in the email, it’s sufficient if you just provide a wide enough
range of v to display different behavior but avoid the troublesome regions. If you do
include troublesome regions and get troublesome answers, you’ll need to have some sort
of explanation for why you’re getting unusual answers and what exactly is happening.

OK, enough writing… here’s a representative plot (in this case, for unconstrained Cs and
for the cost function of -(Cx0 – Cs)*v), followed by sample code.

.

function marksty_P5B1()

clear all; close all;

%PDL> Set up range, initial guess.
% I'm using this initial guess just so that it's obvious
% when I have sensitivity to the initial guess
guess = 1e-4;
% This is the region of consistent behavior for my combination
% of cost function and constraints
vVec = logspace(-2.5,3,40);
options=optimset('LargeScale','off');
%PDL> Minimize for each v.
for i=1:length(vVec),
 v = vVec(i);
 % Note the commented-out part at the end... I've been
 % switching back and forth frequently between the two
 % different options.
 [x, F] = fmincon(@(x)minFunc(x,v),guess,[],[],[],[], ...
 10^(-4),2,[],options);%@(x)nonlinConFunc(x,v),options);
 storage(i) = x;
end
% PDL> Plot results.
% The plot looks much nicer on a semilogx since we're going
% over such a wide range.
semilogx(vVec,storage)
xlabel('v [L/min]')

ylabel('C_s_0 [mol/L]')
title('Optimal initial substrate concentration as a function of
volumetric flowrate')
end

%PDL> implement constraints, function to integrate, and
% cost function.
function F = minFunc(Cs0,v)
% This is the function we need to minimize...
options.disp = 0;
% We find the final Cs by integrating.
[t, y] = ode45(@integFunc,[0 1000],Cs0,options,v);
Cs = y(length(y));
% Then find the product molar flow rate.
F = -(Cs0 - Cs)*v;

end

function f = integFunc(t,Cs,v)
% This is the function we need to integrate, per the
% problem statement.
W = 1000;
alphaC = 1e6;
Vm = 200;
Km = 0.201;
Ksi = 0.5616;
f = -Vm/(alphaC*v)*(Cs/(Km + Cs + Cs^2/Ksi));

end

function [C, Ceq] = nonlinConFunc(Cs0,v)
% If we were implementing constraints on all Cs, this is
% the function we'd use. No equality constraint, and
% we require that Cs(final) (and thus all Cs, since the
% function is monotonically decreasing) are above 1e-4.
C = zeros(2,1);
options.disp = 0;
[t, y] = ode45(@integFunc,[0 1000],Cs0,options,v);
Cs = y(length(y));
C(1) = 10^(-4) - Cs;
% We can also (needlessly) reinforce the maximum of 2, though
% our constraints on Cs0 should take care of this.
C(2) = Cs - 2;
Ceq = 0;

end

Grading:
(-1 point): Plot range insufficient… you must show limiting cases at both high and low v,
where the low v results should max out at Cs0=2 before you reach regions of instability.
(-1 point): Constraints or cost function coded incorrectly
(-1 point): Code doesn’t run immediately due to bug
(-0.5 point): Small parts of write-up incomplete or missing

3. (4 points) 5.B.3 We wish to determine the best path for a road connecting two points
in hilly terrain. Let 2r ∈ℜ be the coordinates of a point in km and let the elevation at
that point, also in km, be z(r). We represent the measured ground elevation data as a
sum of contributions from individual hills, each hill being represented by a Gaussian
function,

() [] []() []() []()1

max
1

1exp
2

hN
k k k

c c
k

z r z r r r r
−

=

⎧ ⎫= − − ⋅ Σ −⎨ ⎬
⎩ ⎭

∑ k

In the region of interest, we use a representation with four hills,
[]1
max 1.2z = []2

max 0.8z = []3
max 0.5z = []4

max 0.5z =

[]1 3
4cr
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 []2 4
1cr
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 []3 1
2cr

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 []4 1
2cr
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

[]1 1.0 0.1
0.1 1.5
⎡ ⎤

Σ = ⎢ ⎥
⎣ ⎦

 []2 3.0 0.5
0.5 1.0
⎡ ⎤

Σ = ⎢ ⎥
⎣ ⎦

[]3 2.5 0.4
0.4 0.8
⎡ ⎤

Σ = ⎢ ⎥
⎣ ⎦

 []4 3.0 0.2
0.2 1.2
⎡ ⎤

Σ = ⎢ ⎥
⎣ ⎦

Figure 5.16 shows the elevation controus along with the start (4, -2) and end (2, 7)
positions of the planned road.

All land is available to build upon. Our task is to find the shortest path between the two
end points subject to the constraint that the grade cannot be greater than 8%, i.e. the
slope cannot be large in magnitude than 0.08.

Let 0 be a contour variable and 1s≤ ≤ r(s) be the path of the road, subject to

()
4

0
2startr r ⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

 and ()
2

1
7endr r ⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

We discretize the path by setting N contour positions ()1ks k N= + and the coordinates

[] ()
[]

[]

k
k

k k

x
r r s

y

⎡ ⎤
= = ⎢

⎢ ⎥⎣ ⎦
⎥ . We wish to minimize

[]() [] []() []()
12 21 1

1

N
k k N

C start end
k

F r r r r r r
−

+

=

= − + − + −∑
2

Subject to the constraints that for each road sement,
[]() []()

[] []() [] []()

1

max2 21 1

k k

k k k k

z r z r

x x y y

+

+ +

−
≤ Γ

− + −
 max 0.08Γ =

Using this approach, propose a path for the road to follow.

This is another relatively straightforward problem; the hardest parts here (beyond the
usual fixing of assorted typos that keep programs from working) are designing reasonable
initial guesses and plotting the hills and path.

It is extremely useful to realize that this program allows for significant functionalization.
For instance, you will need to get the height of many different r values at many different
times, and you don’t necessarily want to confine yourself to a set grid of points, so it is
easiest to make a function, say “marksty_getHeight”, that will return the height of a given
point.

From there, we realize that two additional functions will be useful: a cost function, as
defined by equation (5.180) in the book, and a constraint function, as defined by equation
(5.181). As was noted in an email to the class, the squaring of the vectors in the cost
function is meant to imply dotting those vectors with themselves, giving a scalar output
for the cost function (which is good, since we haven’t covered multiobjective
optimization). We put these in the function marksty_distFun. The constraints are a little
bit different… though there is one constraint equation, it references each point on your
path, so you really need a constraint for each of the steps you take… this means that you
will need N+1 constraint functions. We put these inequality constraints in the function
marksty_conFun.

In my code, I supplied the N interior points (excluding endpoints) as the variables to be
optimized. This means I need no equality constraints. An equally valid method is to
supply the cost function the N+2 total points (including endpoints) and have two equality
constraints, one each for the values of the start and end points. Either way, you must be
consistent between your cost and constraint functions and must define your cost function
appropriately. It is also important to note that either way you should only have N+1
inequality constraints. It does not make sense to have N+3 inequality restraints; at best
some would be redundant, and at worst some may be wrong.

Now what about that contour variable? Is it necessary? Not strictly. It is a useful book-
keeping tool, for sure. There were a couple of questions about whether each of the points
had to be equally far apart from the others, but this is not intrinsic to the definition of a
contour variable as far as I know. So really, you could completely ignore it for the
purposes of solving the problem (which is what I did).

To plot the hills, it is probably easiest to make a 2-D grid and find the height for each
point in the grid; note that this does not preclude us from getting the height at exact
points along our path, it merely gives us a matrix with which we can plot hill contours
and see how reasonable our final path is.

The final issue is setting initial guesses. As a practical matter, I found that my code
behaved much better if my initial guess was close to satisfying constraints even if it was
suboptimal in distance; if I gave it the best distance (a straight line) that obviously
violated constraints, its behavior was somewhat unpredictable. Again, this is to be
expected for any routine that solves for local extrema. This is why we always do our best
to give a good (or at least reasonable) initial guess. Looking at the hills, we see two
obvious ways to circumvent the hills that are most likely going to be our winners: either
through the valley or completely around the hills on the right side of the figure. We’ll set
up initial guesses for those and see what Matlab thinks about them.

Another note: since we are using the better-behaved quadratic cost function (rather than
the square root of each distance vector dotted with itself), there will be a significant
dependence of the final “cost” upon the number of points in the interpolation. For
instance, if we were going a distance of 4 units with one intervening point, our minimum
cost function would be where the intervening point is the midpoint. This would yield a
total cost of 8 (22 + 22). If we put two more points in there, the minimum cost would be 4
(12 + 12 +12 +12), even though we are traveling the same distance.

With all of that being said… we have all of the concepts down, and we can put it all into
code. Below you’ll find plots of the contours and the two paths I found… the path
through the valley turns out to be the better one. For a grid of 25 points, I find the
optimum cost to be 4.3482 km2. The path can be seen on the plot below, delineated by
circles going through the valley. For the morbidly curious, the (x, y) values are included
after the code.

% Mark Styczynski
% 10.34
% HW6, Problem 5.B.3

clear all; close all;

% PDL> Choose number of grid points.
% After some post hoc experimenting, we find that it is unlikely
% that increasing the number of grid points will change the
% character of our solution, so we keep it to N = 25.
N = 25;

% Let's just set the size of this for now.
rGuess = zeros(2,N);

% We can imagine that there may be local optima, so we
% propose a couple of possible paths... one guaranteed
% to go through the "valley", another guaranteed to just
% circumvent all mountains.

%PDL> Set up initial guesses
% We choose the point (1, 6) and note that a line between
% the beginning and that point will likely not violate
% constraints and will lead us through the valley. We then

% interpolate to make N total points leading us there.
for k=1:N,
 rGuess(1,k) = 4 + (1 - 4)/(N+1)*k;
 rGuess(2,k) = -2 + (6 - (-2))/(N+1)*k;
end

% PDL> Find constrained optimum.
rVec = fmincon('marksty_distFun',rGuess,[],[],[],[],[],[], ...
 'marksty_conFunc')

optimum1 = marksty_distFun(rVec)

% PDL> Set up initial guesses
% The point (6,6) will lead us around the hills instead.
% Same concept as above.
for k=1:N,
 rGuess(1,k) = 4 + (6 - 4)/(N+1)*k;
 rGuess(2,k) = -2 + (6 - (-2))/(N+1)*k;
end
% PDL> Find constrained optimum.
rVec2 = fmincon('marksty_distFun',rGuess,[],[],[],[],[],[], ...
 'marksty_conFunc')

optimum2 = marksty_distFun(rVec2)

% This value is greater than the previous one, so we believe
% that the route through the valley is the shortest one
% that obeys the constraints.

% Some code for plotting borrowed from Dr. Beers, 2004.

% PDL> Set up a mesh to plot hill contours.
x = [-4:.1:8];
y = [-4:.1:8];
[XX,YY] = meshgrid(x,y);
ZZ = zeros(size(XX));
for ix=1:length(x)
 for iy=1:length(y)
 r = [XX(iy,ix); YY(iy,ix)];
 ZZ(iy,ix) = marksty_getHeight(r);
 end
end

% PDL> Make contour plot
figure;
[C,H] = contour(XX,YY,ZZ,8);
clabel(C,H);
xlabel('x (km)'); ylabel('y (km)');
zlabel('z (km)');
title('A road through hills: optimal path indicated by circles');
hold on;
% PDL> Plot paths on contour plot.
r_start = [4;-2]; r_end = [2; 7] ;
plot(r_start(1),r_start(2),'x');
text(r_start(1)+0.2,r_start(2)+0.2,'START');

plot(r_end(1),r_end(2),'x');
text(r_end(1)-0.75,r_end(2)+0.3,'END');
plot(rVec(1,:),rVec(2,:),'o');
plot(rVec2(1,:),rVec2(2,:),'+');
return;

function Fc = marksty_distFun(rVec)
% Function to return the cost/distance for a set of points.

% Assume rVec = [r1 r2 r3 ...]
% So its size is 2 x N

rVecSize = size(rVec);
N = rVecSize(2);
rStart = [4; -2];
rEnd = [2; 7];

%PDL> Find first step distance.
Fc = sum((rVec(:,1) - rStart).^2);

%PDL> Add interim step distance.
for k=1:N-1,
 Fc = Fc + sum((rVec(:,k+1) - rVec(:,k)).^2);
end

%PDL> Add final step distance.
Fc = Fc + sum((rEnd - rVec(:,N)).^2);

function [C, Ceq] = marksty_conFunc(rVec)
% A constraint function to enforce the maximum slope requirement.
% Assume rVec = [r1 r2 r3 ...]
% So its size is 2 x N

rVecSize = size(rVec);
N = rVecSize(2);
rStart = [4; -2];
rEnd = [2; 7];
maxSlope = 0.08;

% PDL> Constraint for the first step
C(1) = abs(marksty_getHeight(rVec(:,1))- marksty_getHeight(rStart))/...
 norm(rVec(:,1) - rStart) - maxSlope;

% PDL> Constraint for intermediate steps.
for k=1:N-1,
 C(k+1) = abs(marksty_getHeight(rVec(:,k+1))-
marksty_getHeight(rVec(:,k)))/...
 norm(rVec(:,k+1) - rVec(:,k)) - maxSlope;
end

% PDL> Constraint for final step.
C(N+1) = abs(marksty_getHeight(rEnd)- marksty_getHeight(rVec(:,N)))/...
 norm(rEnd - rVec(:,N)) - maxSlope;

% PDL> No equality constraints.
Ceq = 0;

function z = marksty_getHeight(r)

% Function to obtain the height z of a point r in hilly terrain.
% r is a 2-d vector

zMax = [1.2 0.8 0.5 0.5];
rc = [3 4 -1 -1; 4 1 -2 2];
sigmaInv(:,:,1) = inv([1 0.1; 0.1 1.5]);
sigmaInv(:,:,2) = inv([3 0.5; 0.5 1]);
sigmaInv(:,:,3) = inv([2.5 0.4; 0.4 0.8]);
sigmaInv(:,:,4) = inv([3 0.2; 0.2 1.2]);
z = 0;

% PDL> Add the component elevations together.
for k=1:4
 z = z + zMax(k)*exp(dot(-.5*(r - rc(:,k)), ...
 sigmaInv(:,:,k)*(r - rc(:,k))));
end

rVec =
 3.7561 -1.6696
 3.4778 -1.3325
 3.0967 -1.1832
 2.7041 -1.0683
 2.3116 -0.9536
 1.9322 -0.8003
 1.6183 -0.5321
 1.4272 -0.1696
 1.3033 0.2199
 1.2473 0.6252
 1.2311 1.0315
 1.2149 1.4382
 1.1988 1.8446
 1.1825 2.2514
 1.1663 2.6579
 1.1503 3.0645
 1.1342 3.4713
 1.1520 3.8776
 1.1908 4.2825
 1.2523 4.6847
 1.3409 5.0817
 1.4589 5.4714
 1.6030 5.8516
 1.7615 6.2255
 1.9007 6.6076

Grading:
2 points: Concepts, approach, and understanding of the problem (writeup, etc)
1 point: Trying multiple initial guesses… partial credit was given depending on the
amount you addressed global/local optimality
1 point: Getting the correct path and providing either a plot or coordinates for it

