
Produced using MATLAB® software.

TR_1D_model1_SS\TR_1D_model1_SS.m

% TR_1D_model1_SS\TR_1D_model1_SS.m

%

% function imain_flag = TR_1D_model1_SS();

%

% This program calculates the steady state concentration

% and temperature profiles in a 1-D tubular reactor for

% an arbitrary number of species and an arbitrary reaction

% network. The reaction network is specified by the

% stoichiometric coefficients and the exponential powers to

% which the concentrations of each species are raised in

% the rate laws. The effective diffusivities for each

% species and the density and heat capacity of the medium

% are assumed to be constant. The heats of reaction are

% likewise assumed constant, and the temperature dependence

% of each rate constant is specified by the value of the

% rate constant at a reference temperature and a constant

% activation energy. The heat transfer coefficient for the

% cooling jacket is assumed constant. Dankwert's boundary

% conditions are applied at the inlet and outlet. A constant

% superficial velocity, obtained from knowledge of the reactor

% dimensions and volumetric flow rate, is used to quantify the

% convective contribution to the fluxes of each species'

% concentration and the enthalpy.

%

%

% PROGRAM INPUT/OUTPUT DATA

% =========================

%

% problem_dimension_data (struct ProbDim)

% --------------------------------------

% .num_species IN INT

% the number of species

% .num_rxn IN INT

% the number of reactions

%

% reactor_data (struct Reactor)

% -----------------------------

% .len IN REAL

% the length of the tubular reactor

% .dia IN REAL

% the diameter of the tubular reactor

% .Qflow IN REAL

% the volumetric flow rate through the

% reactor. Along with the dimensions

% of the reactor, it defines the superficial

% velocity used in the convective terms of

% the species and enthalpy balances.

% .Temp_cool IN REAL

% the temperature of the reactor coolant

% jacket

% .U_HT IN REAL

% the overall heat transfer coefficient of

% the reactor

% .conc_in IN REAL(ProbDim.num_species)

% the concentrations of each species in

% the reactor inlet

% .Temp_in IN REAL

% the temperature of the reactor inlet

% .volume PROG REAL

% the volume of the reactor

% .cross_area PROG REAL

% the cross sectional area of the reactor

% .surf_area PROG REAL

% the surface area of the reactor available

% for heat transfer to the cooling jacket

% .velocity PROG REAL

% the superficial velocity in the reactor

% that is included in the convective

% flux terms

%

% physical_data (struct Physical)

% -------------------------------

% .diffusivity IN REAL(num_species)

% the constant diffusivities of each species

% .density IN REAL

% the constant density of the medium

% .Cp IN REAL

% the constant heat capacity of the medium

% .thermal_conduct IN REAL

% the constant thermal conductivity of

% the medium

% .thermal_diff PROG REAL

% the constant thermal diffusivity of

% the medium

%

% rxn_data (struct Rxn)

% ---------------------

% .stoich_coeff IN

% REAL(ProbDim.num_rxn,ProbDim.num_species)

% the stoichiometric coefficients

% possibly fractional) of each

% species in each reaction.

% .ratelaw_exp IN

% REAL(ProbDim.num_rxn,ProbDim.num_species)

% the exponential power (possibly fractional)

% to which the concentration of each species

% is raised each reaction's rate law.

% .is_rxn_elementary IN INT(ProbDim.num_rxn)

% if a reaction is elementary, then the

% rate law exponents are zero for the

% product species and the negative of the

% stoichiometric coefficient for the

% reactant species. In this case, we need

% not enter the corresponding components of

% ratelaw_exp since these are determined by

% the corresponding values in stoich_coeff.

% We specify that reaction number irxn is

% elementary by setting

% is_rxn_elementary(irxn) = 1.

% Otherwise (default = 0), we assume that

% the reaction is not elementary and require

% the user to input the values of

% ratelaw_exp for reaction # irxn.

% .k_ref IN REAL(ProbDim.num_rxn)

% the rate constants of each reaction at a

% specified reference temperature

% .T_ref IN REAL(ProbDim.num_rxn)

% This is the value of the reference

% temperature used to specify the

% temperature dependence of each

% rate constant.

% .E_activ IN REAL(ProbDim.num_rxn)

% the constant activation energies of

% each reaction divided by the value

% of the ideal gas constant

% .delta_H IN REAL(num_rxn)

% the constant heats of reaction

%

%

% PROGRAM IMPLEMENTATION NOTES

% ============================

%

% Section 1. Method of discretizing PDE's :

% ---

%

% To discretize the partial differential equations

% that describe the balances on the species

% concentrations and the enthalpy, use the method of

% finite differences. To avoid spurious oscillations

% when convection dominates and the local Peclet

% number is greater than two, use upwind differencing.

% Implement the finite difference procedure so that

% the grid point spacing may be non-uniform.

%

% grid_data (struct Grid)

% -----------------------

% .num_pts PIN INT

% the number of grid points in

% the axial direction

% .z POUT REAL(Grid.num_pts)

% the values of the z-coordinate

% at the grid points

%

% state_data (struct State)

% ------------------------

% .conc POUT

% REAL(Grid.num_pts,ProbDim.num_species)

% the values of the species'

% concentrations at grid points

% .Temp POUT REAL(Grid.num_pts)

% the values of the temperature

% at each grid point

%

%

% Section 2. Method of solving for the steady state profiles :

% --

%

% To solve for the steady-state profiles, we will use a robust

% two-step procedure. We will initially assume that the inlet

% conditions hold uniformly throughout the reactor. As this is

% likely to be far from the true solution, we will first perform

% a number of implicit Euler time integration steps to get

% within the vicinity of the stable steady state solution. The

% time integration will proceed until a maximum number of time

% steps have been performed or until the norm of the time

% derivative vector falls below a specified value. If the time

% derivative has become sufficiently small, we will switch to

% Newton's method with a weak-line search to aid global

% convergence.

%

% If one wishes to use only Newton's method to solve for the

% steady state profile (for example to find an unstable steady

% state), then Solver.max_iter_time is set to 0. Otherwise,

% if the maximum number of time integration steps has been

% performed and the time derivative is still too large, the

% program exits without performing any Newton's method iterations.

%

% A restart utility will be added so that if convergence is not

% achieved, executing the program again will start from the

% previously saved results. Upon a restart, new time step and

% convergence tolerances are input.

%

% At each time or Newton's method iteration, the values of the

% concentration and temperatures at each grid point will be

% constrained to be non-negative.

%

%

% iflag_restart PIN INT

% This integer flag indicates whether the

% simulation is a restart of a previous simulation,

% in which only new convergence parameters need be

% input, or is an initial simulation in which all

% system parameters must be input. If iflag_restart

% is non-zero, then it is a restart, if 0 then it is

% an initial simulation.

%

% imain_flag POUT INT

% This integer flag signifies whether the solution

% method has converged. A positive value signifies

% that convergence to the steady state value has

% been attained. A negative value indicates some error.

%

% solver_data (struct Solver)

% ---------------------------

% .max_iter_time PIN INT

% the maximum number of implicit Euler time steps.

% If =0, then no time simulation is performed and the

% solver goes immediately to Newton's method

% .dt PIN REAL

% the time step to be used in the implicit

% Euler simulation

% .atol_time PIN REAL

% the norm of the function (time derivative) vector

% at which the time integration procedure is deemed

% to have been sufficiently converged

% .max_iter_Newton PIN INT

% the maximum number of Newton's method iterations

% .atol_Newton PIN REAL

% the norm of the function (time derivative) vector

% at which convergence to the steady state solution is

% deemed to have been achieved

% .iflag_Adepend PROGINT

% if this integer flag is non-zero, then the A matrix

% is assumed to be state-dependent and so must be

% recalculated at every iteration

% .iflag_nonneg PROG INT

% if this integer flag is non-zero, then the elements

% of the state vector are enforced to be non-negative

% at every iteration

% .iflag_verbose PROG INT

% if this integer flag is non-zero, then the solver

% routine is instructed to print to the screen the

% progress of the solution process; otherwise, it

% runs silent

%

% Interaction with Section 1. Method of discretizing PDE's :

%

% Each time that the program runs, the solver will overwrite the

% value of the concentration and temperature profiles. It could

% be that too large of a time step is used or that Newton's method

% has a problem converging, so that the quality of the solution

% is poorer than it was before the solver was called. The next

% restart should therefore start from the old, better solution

% and not necessarily the most recent. To guard against this,

% if the output solution estimate appears farther from steady

% state than the input estimate, a warning message will be

% returned and two separate output files will be created. The

% results of the solver will be written to the standard output

% file, but a second file will be written that retains the initial

% results. If these previous results are to be used in a

% subsequent restart, the user copies this file to the name of

% the standard output file before running again. User discretion

% is required in this case, because the dynamics of some systems

% have an induction period. In this case, the magnitude of the

% time derivative vector will naturally increase in the course

% of approaching the stable steady state.

%

% Kenneth Beers

% Massachusetts Institute of Technology

% Department of Chemical Engineering

% 7/2/2001

%

% Version as of 7/25/2001

function imain_flag = TR_1D_model1_SS();

func_name = 'TR_1D_model1_SS';

imain_flag = 0;

% This integer flag controls what to do if an assertion fails.
% See assertion routines for meaning.
i_error = 2;

% PDL> Ask if it is a restart, read answer to iflag_restart

disp('Starting TR_1D_model1_SS');

iflag_restart = input('Is this a restart? (0=no, 1=yes) : ');

check_real=1; check_sign=2; check_int=1;

assert_scalar(i_error,iflag_restart,'iflag_restart',...

func_name,check_real,check_sign,check_int);

% PDL> IF it is not a restart, THEN

if(iflag_restart == 0)

% PROCEDURE: read_program_input
% PDL> Read in the program input data (intent IN)
% PDL> Among PIN data, read grid_data:num_pts
% ENDPROCEDURE

disp('Reading program input ...');

[ProbDim,Reactor,Physical,Rxn,Grid,iflag_func] = ...
read_program_input;

if(iflag_func <= 0)
imain_flag = -1;
if(i_error > 1)

save dump_error.mat;
end
error([func_name, ': ', ...

'Error (', int2str(iflag_func), ') ', ...

 'returned from read_problem_input']);
end

% PROCEDURE: set_grid_1D

% PDL> Specify the locations of the grid points in z_grid.

% For the moment, simply use a uniform grid, although

% write the rest of the program to be compatible with

% the use of a non-uniform grid

% ENDPROCEDURE

disp('Setting grid ...');

[Grid.z,iflag_func] = set_grid_1D(Grid.num_pts,Reactor.len);

if(iflag_func <= 0)

imain_flag = -2;
if(i_error > 1)

save dump_error.mat;
end
error([func_name, ': ', ...

'Error (', int2str(iflag_func), ') ', ...
'returned from set_grid_1D']);

end

% PDL> Initialize the concentration and temperature profiles
% by setting them to be uniformly equal to the inlet
% conditions.

State.conc = zeros(Grid.num_pts,ProbDim.num_species);
for ispecies = 1:ProbDim.num_species

State.conc(:,ispecies) = Reactor.conc_in(ispecies);
end

State.Temp = linspace(...
Reactor.Temp_in,Reactor.Temp_in,Grid.num_pts)';

% PDL> ELSE IF NOT a restart THEN

else

% PDL> Read in the file TR_1D_model1_SS.mat

disp('Reading file TR_1D_model1_SS.mat');
load TR_1D_model1_SS.mat;

% PDL> ENDIF

end

% PROCEDURE: read_solver_input

% PDL> Input the values of the PIN variables that control

% the solver operation

% ENDPROCEDURE

[Solver,iflag_func] = read_solver_input;
if(iflag_func <= 0)

imain_flag = -3;
if(i_error > 1)

save dump_error.mat;
end
error([func_name, ': ', ...

'Error (', int2str(iflag_func), ') ', ...
'returned from read_solver_input']);

end

%PDL> Save the initial concentration and temperature
% profiles in back-up variables for possible later
% use in a restart in case the solver behaves badly.

State_init = State;

% PROCEDURE: TR_1D_model1_SS_solver
% PDL> Call the solver to update the estimate
% of the solution vector
% ENDPROCEDURE

[State,iflag_converge,f,f_init] = ...
TR_1D_model1_SS_solver(State_init, ...
Solver,ProbDim,Reactor,Physical,Rxn,Grid);

% PDL> Write the results of the simulation to
% the file TR_1D_model1_SS.mat

save TR_1D_model1_SS.mat;

% PDL> CASE : Select course of action based on
% value of iflag_converge returned from
% steady state solver

switch iflag_converge;

% PDL> IF iflag_converge IS 0,
% signifying no convergence

case {0}

% PDL> Set integer flag of main program,
% imain_flag to 0

imain_flag = 0;

% PDL> If the norm of the function (time derivative)

% vector is greater after the solver operation

% than it was before, set the return value of

% imain_flag to indicate this. Then, write the

% old profiles to the file

% TR_1D_model1_SS_backup.mat and set

% imain_flag as indicator

norm_f_init = max(abs(f_init));
norm_f = max(abs(f));

if(norm_f > norm_f_init)
disp(' ');
disp(['Final estimate had larger error ',...

'than initial estimate']);
imain_flag = -4;
State = State_init;
clear State_init;
save TR_1D_model1_SS_backup.mat;

end

% PDL> IF iflag_converge IS 1, signfying convergence
PDL> Print convergence message and set%

% imain_flag to 1

case {1}

imain_flag = 1;

disp(' ');

disp('Solver converged');

% PDL> IF iflag_converge IS negative, signfying error
% PDL> Print error message and set imain_flag to -1

otherwise

imain_flag = -5;
disp(['Error encountered with iflag_converge = ', ...

int2str(iflag_converge)]);

% PDL> ENDCASE

end

% PDL> Make plots of the solver output results

plot_results(ProbDim.num_species,Grid,State);

return;

