
10.34 Numerical Methods Applied to Chemical Engineering Fall 2015

Homework #6: Boundary Value Problems (BVPs)

Problem 1. (10 points)
Most entropies of gas phase molecules tabulated in databases were not directly determined

experimentally, instead they were computed using statistical mechanics. The biggest challenge in
these computations is to determine the entropy contribution from internal rotations in the molecule,
e.g. when a methyl (−CH3) group spins around relative to the rest of the molecule.

Statistical mechanics formulas for the Boltzmann-weighted energy (U) and Helmholtz free en-
ergy (A) are known in terms of the allowed (quantized) energy levels {En} of the molecule:
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From the computed U and A, you can compute S. In this problem, we’ll compute the {En}

and then the S associated with the internal rotation of methanol HO − CH3.

1. To find {En} we will use the Schroedinger equation. The Schroedinger equation associated
with the angle θ between the O −H and one of the C −H’s is(
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8πI

)
d2Ψn

+ V3 1 Ψ
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− cos(3θ) n = EnΨn (1)
dθ

where I ∈ R is the reduced moment of inertia

(
associate with

)
rotating the methyl group relative

to the OH group, h is Planck’s constant and V3 ∈ R is half of the height of the potential energy
barrier to spinning the methyl group. (Note that we are assuming the potential energy surface
is given by a simple cosine shape.) We will find the numerical solution by approximating the
wavefunction, Ψn, using a basis set expansion

∑M
Ψn(θ) = CmnΦm(θ) (2)

m=−M

and use Galerkin’s method (multiplying both sides by one of the basis functions and integrat-
ing) to convert the differential equation into N = 2M + 1 algebraic equations:
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where Φ∗
k(θ) is the complex conjugate.
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Use the basis

Φm(θ) = eimθ

to simplify the algebra. For example, using this basis

d2Φm
= 2

2
−m Φm(θ)

dθ

This form of basis automatically satisfies many physical conditions on the wavefunctions for
these types of problems, e.g. that Ψn(θ) = Ψn(θ+ 2π). Conveniently, all of the integrals that
arise can be computed analytically, see below for some hints.

Write out one of the Schroedinger equations. Show how the integrals are simplified by eval-
uating them analytically.

HINT : You will find the following integral formulas to be useful:

∫ 2π 0, if k = m
e−ikθeimθdθ =
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∫ 2π 2π ei3θ θ
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eimθdθ =

{
0, − k 6= ±3

π, if m− k = ±3

2. Now consider the full set of Schroedinger equations. We want to write the system of equations
in the form

HC = CE

What is the sparsity pattern of H? Report H for M = 2 (i.e. H ∈ R5×5).

3. Write a function to solve for {En} using eig function

HC = CE

Your function should take the effective moment of inertia (I, in kg m2), the parameter V3 (in
J) and the temperature T (in K) as inputs. Your function should also read in Mmax which
will set the number of basis functions to use in your expansion for Ψ.

4. Write a function that calls the function you wrote to calculate the entropy for the
following parameters:

I = 1.2× 10−45 kg m2

V3 = 0.81× 10−20 J

T = 300 K

This function should generate a plot of the computed entropy as a function of M . Approxi-
mately how big a basis is needed for the computed value of S(300K) to be converged to 1%?
What is the converged value of the entropy associated with this internal rotation at 300K ?
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By construction, if you take your computed lowest-energy eigenvalue E0 and its corresponding
eigenvector c0, use the definition of Ψ in eqn. 2 and plug into eqn. 3, that equation will be
satisfied to good numerical precision. Do you think this numerical solution of eqn. 3 also
satisfies the original eqn. 1 at all angles?

Note: The molecular constants I and V3 can be determined experimentally using high-
resolution microwave or infrared spectroscopy. Now I and V3 (and better representations
of the shape of the potential energy surface than a simple cosine) can be computed pretty
accurately using quantum chemistry, which is becoming the most common way to determine
entropies for molecules in the gas phase.

Problem 2. (10 points)
Consider the following steady-state reaction-diffusion problem, which describes the simple con-

sumption of a reactant with concentration C in a porous bed of thickness H where there is no
convection. The porous bed could be either a slab of cells (in which case the reactant might be
dissolved oxygen), or a catalytic washcoat (in which case the reactant might be carbon monoxide in
exhaust gases). Here is the equation for the steady-state concentration of C, where a reactant with
effective diffusivity inside the bed of D is being consumed at reaction rate r(C, T ) at temperature
T , but new reactant is diffusing in to maintain a steady concentration:

d2C
D
dx2
− r (C, T ) = 0

dC
=

dx

∣∣∣∣ 0
x=0

C (H) = C0

The above boundary conditions are appropriate if the porous bed is resting on an impermeable
wall at x = 0, and if the concentration C0 of the reactant at the top of the bed x = H is known.
The reaction will have an associated heat of reaction ∆Hrxn, so there is a coupled temperature
equation from energy balance:

d2T
γ

dx2
− r (C, T ) = 0

dT
=

dx

∣∣∣∣ 0
x=0

T (H) = T0

where γ = ∆Hrxn . These boundary conditions shown are appropriate if the temperature at theαCP

top of the bed is known, and the impermeable wall is a perfect insulator. Your task is to use the
shooting method to compute the concentration and temperature profiles C(x) and T (x) inside the
bed. Note that the total molar flow rate F of the reactant flowing into the bed and consumed is
given by

dC
F = AD

dx

where A is the area of the bed.
dyFirst, rewrite the system of differential equations in the standard form = f(y). Arrange thedx

equations so x0 corresponds to x = H and xf corresponds to x = 0.

3



Note that you do not know all 4 initial conditions, so you will need to guess the missing
initial conditions, and then iteratively improve them until the solution satisfies the other boundary
conditions. This is the shooting method. We suggest you use fsolve to do the iterative improvement,
and ode45 to solve the ODE-IVP corresponding to each set of initial conditions.

In this problem, solve the system for these three different rate laws r(C, T ):

1. r(C, T ) = kC. This is a simple linear-kinetics test case for debugging your code; it can be
solved analytically. The analytical solution is

cosh( x
C(x) = C0

L)

cosh(H )L

where L =
√

D . For your test use these values of the parameters: C0 = 1.2k × 10−6 mol
cm3 ,

T0 = 300K, k = 0.041s−1, D = 0.022 cm
2

s , ∆Hrxn = −50 kJ
mol , α = 0.11 cm

2

s , CP = 0.004 J ,
cm3K

and H = 2.2cm. Make a plot comparing your numerical solution from shooting versus the
analytical solution. Hint: the two should be identical. If you are getting problems with
fsolve, it may help to convert everything into a dimensionless system in order to have the
system properly scaled.

What is the Thiele modulus of the system? Does the plot agree with the modulus?

kC (C 2

2. r(C, T ) = sat −Cmin)
2 if C > Cmin, 0 otherwise. This is a typical case for cell metabolism,

(C+Csat)

where the reactant is O2. When C drops to Cmin the cells cannot function and stop metab-
olizing so r → 0. As C gets large the consumption rate saturates. The diffusivity is smaller

2
in this liquid-phase case: D = 10−5 cm

s . Also, assume that ∆H = 0. Note that you will need

to initialize dT = 0 as well to satisfy the boundary conditions. Compute and plot resultsdx

using the same parameters as in Part 1, with Cmin = 5 × 10−8 mol
cm3 and Csat = 10−6 mol .

cm3

Approximately what fraction of the cells in the bed are not metabolizing effectively because
they are starved for O2? (Note here we assumed r(C, T ) has no T dependence, but in reality
the water would boil and the cells would die if T went too high).

3. r(C, T ) = AC exp
(
− Ea
RT

)
This is a typical case for catalytic chemistry, for example the

reactant could be carbon monoxide in an exhaust stream. R = 8.314 J
mol·K . Use these

parameter values: A = 1.1× 109s−1, Ea = 101 kJ , and T0 = 503K; all other parameters themol
same as in part 1. Plot the T profile as well as the C profile. Also plot the analytical solution
from part 1. Why are they different?

N.B. This model ignores the volumetric expansion of gases due to change in temperature.
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