
10.34 Numerical Methods Applied to Chemical Engineering Fall 2015

Homework #7: Numerical Simulation of Partial Differential Equations

Problem 1. You will use COMSOL and the finite volume method to solve a problem describing
drug release from a medical implant. A simple 2-dimensional model on a rectangle 0 ≤ x ≤ R and
0 ≤ y ≤ B is used to describe the transport of the drug. The implant is resting on an impermeable
slab at y = 0. We assume that the implant has negligible height in the y direction and covers the
slab from x = 1 cm to x = 2 cm. Above the slab is a fluid bath. The fluid above the slab is flowing
in the positive x direction with velocity vx(y) = voy for y ≤ H. vx = 0.5 cm/s if y ≥ H For this
problem assume vo = 0.5 /s. Let H = 1cm.

The concentration of drug in the fluid immediately above the implant is in equilibrium with
the drug implant and can be assumed constant at Ceq = 1 mol/L. Moreover, because of the flow
velocity, the concentration at x = 0 is negligible. The diffusion coefficient of the drug in the fluid
is 6 × 10−6 (cm)2/s. The 2-dimensional PDE governing the concentration in the fluid above the
implant at steady state is
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We want to solve for the concentration field C(x, y) in the fluid and calculate the flux of drug from
the implant:
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This Flux is the average moles of drug released per second per unit area of the patch. This is
important for determining how long the implant will last before being depleted of the drug.

Before trying to solve the problem numerically, dimensional analysis and physical insight can
be used to predict the form of the solution. The governing equation can be made dimensionless by
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defining the characteristic length L and the dimensionless quantities:

L2 = D/vo (3)

Ĉ = C/Ceq (4)

x̂ = x/L (5)

ŷ = y/L (6)

In terms of these dimensionless quantities, the governing equation becomes:
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The dimensionless group Pe = voHW/D is called the Peclet number. In this problem it can be
very large, for example if H = 1 cm, Pe = (1/12) × 106. Physically this indicates that advection
is much stronger than diffusion. A boundary layer analysis of the type discussed in 10.50 can be
used to show that the drug will diffuse a distance δ = Pe−1/3W away from the slab in the time
it takes the flow field to advect the drug a distance, W . Because the Peclet number is large, this
suggests that δ is small, and that the concentration of drug is practically zero when y � δ. (Note
also that the L used in the scaling is rather small: L = 0.0035 cm.) A good numerical solution
to this problem will need many points in the y-direction within a distance δ of the slab to resolve
this sharp variation in the concentration. Also, we expect to have to use upwind differencing for
convection for numerical stability, since we may not able to use a fine enough discretization in the
x direction.

1. Describe and justify which combination of boundary conditions you will use.

2. One can derive equations for the amount of drug (moles/s) flowing through each of the faces
of a rectangular finite volume (i, j) with width and height, ∆x and ∆y. This is the normal
flux through a surface (units of moles/cm2 − s) times the surface area of the face. However,
in this 2-d infinite problem everything is done ”per ∆z ” where z is the direction in and out
of the plane of the paper, and therefore has extra units of length−1. The amount of drug
flowing (mole/s per unit depth) through the south, west, and east faces are given by:
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volume (i, j), yi,j is the
y-coordinate at the center of volume (i, j) and Ci,j is the average value of C(x, y) in volume
i, j. Derive an equation for the moles of drug per second per unit depth flowing through the
north face: FN

i,j . For reference the finite volume (i− 1, j) sits to the left of (i, j) in the (x, y)
plane (see diagram). Although the figure is drawn with a uniform mesh, you also have the
option of using a non-uniform mesh.

2



3. Write a non-dimensional equation for the steady-state material balance of the drug in a finite
volume away from any boundary. Also write the equation for a finite volume whose south-
edge is coincident with a no-flux boundary, and the equation for a finite volume whose north
edge is coincident with a C=0 boundary.

4. Write a MATLAB program that combines your finite volume derivation with boundary con-
ditions to solve for the steady-state concentration field and compute the flux of drug from the
implant once steady-state is achieved. You are free to choose R, B and the width of the finite
volumes in the x- and y-directions. Note that your equations are linear in the unknown Ci,j .
Do you need an initial guess for this problem, why or why not? How will you take advantage
of the fact that the Jacobian is very sparse?

5. We suggest you start small: use a very small value of H = B, with a C = 0 boundary
condition at y = H; physically this corresponds to case where there is an adsorbent wall at
that location moving to the right at velocity voy. This will allow you to use a very small
value of δy perhaps even as small as L. Note that imposing this boundary condition should
overestimate the computed Flux, with the level of over-estimation decreasing monotonically as
H increases. Once you confirm that the simulation is working correctly for small H, increase
H = B. The flux of drug leaving the patch should converge when H and/or B gets large
enough. The real physical situation you are trying to model has H = 1 cm and B large.

6. Show that the computed Flux converges as R and B become sufficiently large and ∆x, ∆y
become sufficiently small. Hint: do not try to specify the number of finite volumes in each
direction directly. Instead, let the number of volumes in the x-direction be R/∆x and the
number of nodes in the y-direction be B/∆y where these ratios are necessarily integers.

7. Compare your finite volume calculation with a calculation for the same system performed
using COMSOL (similar to what we did in class). Make a contour plot of the concentration
computed using your function,and of the COMSOL solution, and discuss the results.
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