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JAMES W. SWAN: So this is going to be our last lecture on linear algebra. The first three lectures covered basics.

The next three lectures, we talked about different sorts of transformations of matrices. This

final lecture is the last of those three. We're going to talk about in another sort of

transformation called the singular value decomposition.

OK, before we jump in, I'd like to do the usual recap business. I think it's always hopeful to

recap or look at things from a different perspective. Early on, I told you that the infinite

dimensional equivalent of vectors would be something like a function, which is a map, a unique

map maybe from a point to x to some value f of x. And there is an equivalent representation of

the eigenvalue eigenvector problem in function space. We call these eigenvalues and

eigenfunctions.

Here's a classic one where the function is y of x, OK? This is the equivalent of the vector, and

equivalent of the transformation or the matrix that's this differential operator this time, the

second derivative. So I take the second derivative of this particular function, and the function is

stretched. It's multiplied by some fixed value at all points. And it becomes lambda times y.

And that operator has to be closed with some boundary conditions as well. We have to say

what the value of y is at the edges of some boundary. So there's a one-to-one

correspondence between these things.

What is the eigenfunction here, or what are the eigenfunctions? And what are the eigenvalues

associated with this transformation or this operator? Can you work those out really quickly?

You learned this at some point, right?

Somebody taught you differential equations and you calculated these things. Take about 90

seconds. Work with the people around you. See if you can come to a conclusion about what

the eigenfunction and eigenvalues are.

That's enough time. You can work on this on your own later if you've run out of time. Don't



That's enough time. You can work on this on your own later if you've run out of time. Don't

worry about it. Does somebody want to volunteer a guess for what the eigenfunctions are in

this case? What are they? Yeah?

AUDIENCE: [INAUDIBLE]

JAMES W. SWAN: OK, so you chose exponentials. That's an interesting choice. That's one possible choice you

can make. OK, so we could say-- this is sort of a classical one that you think about when you

first learn differential equation. They say, an equation of this sort has solutions that look like

exponentials, and that's true. There's another representation for this, which is as trigonometric

functions instead, right?

Either of those is acceptable. [INAUDIBLE] the trigonometric functions, that representation is a

little more useful for us here. We know that the boundary conditions tell us that y of 0 is

supposed to be 0. That means that the C1 has to be 0, because cosine of 0 is 1. So C1 has 0

in this case. So that fixes one of these coefficients.

And now we're left with a problem, right? Our solutions, our eigenfunctions, cannot be unique.

So we don't get to specify C2, right? Any function that's a multiple of this sine should also be

an eigenfunction.

So instead the other boundary condition, this y of l equals 0, needs to be used to pin down

with the eigenvalue is. So the second equation, y of l equals 0, which implies that the square

root of minus lambda has to be equal to 2 pi over l, it has to be all the nodes of the sine where

the sine is equal to 0. That's the equivalent of our secular characteristic polynomial that

prescribes with the eigenvalues are associated with each of the eigenfunctions.

So now we know what the eigenvalues are. The eigenvalues are the set of numbers minus 2

pi n over l squared. There's an infinite number of eigenvalues. It's an infinite dimensional

space that we're in, so it's not a big surprise that it works out that way. And the eigenvectors

then are different scalar multiples of sine of the eigenvalues, square root of the eigenvalues,

minus x.

There's a one-to-one correspondence between all the linear algebra we've done and linear

differential equations or linear partial differential equations. You can think about these things in

exactly the same way. I'm sure in 1050, you started to talk about orthogonal functions to

represent solutions of differential equations. Or if you haven't, you're going to very soon.



This is a part of the course you get to look at the analytical side of some of these things as

opposed to the numerical side. But there's a one-to-one relationship between those things. So

if you understand one, you understand the other, and you can come at them from either

perspective.

This sort of stuff is useful. Actually, the classical chemical engineering example comes from

quantum mechanics where you think about wave functions and different energy levels

corresponding to eigenvalues. That's cool. Sometimes, I like to think about a mechanical

analog to that, which is the buckling of an elastic column.

So you should do this at home. You should go get a piece of spaghetti and push on the ends

of the piece of the spaghetti. And the spaghetti will buckle. Eventually it'll break, but it'll buckle

first. It'll bend.

And how does it bend? Well, a balance of linear momentum on this bar would tell you that the

deflection in the bar at different points x along the bar multiplied by the pressure has to

balance the bending moment in the bar itself. So this e is some elastic constant. I has a

moment of inertia.

And D squared y dx squared is something like the curvature of the bar. So it's the bending

moments of the bar that balances the pressure that's being exerted on the bar. And sure

enough, this bar will buckle when the pressure applied exceeds the first eigenvalue associated

with this differential equation.

We just worked that eigenvalue out. We said that that eigenvalue had to be the square root of

2 pi over l squared. And so when the pressure exceeds square root of 2 pi over l squared

times the elastic modulus, this column will bend and deform continuously until it eventually

breaks, right? It will undergo this linear elastic deformation, then plastic deformation later, and

it will break.

The Eiffel Tower, actually, is one of the first structures in the world to utilize this principle,

right? It's got very narrow beams in it. The beams are engineered so that their elastic modulus

is strong enough that they won't buckle. Gustave Eiffel is one of the first applied physicists,

somebody who took the physics of elastic bars and applied them to building structures that

weren't big and blocky, but used a minimal amount of material. Cool, right?

OK, so that's recap. Any questions about that? You've seen these things before. You



understood them well before too maybe? Give some thought to this, OK?

We talked about eigendecomposition last time that, associated with the square matrix, was a

particular eigenvalue or particular set of eigenvalues, stretches and corresponding

eigenvectors directions. These were special solutions to the system of linear equations based

on a matrix. It was a square matrix.

And you might ask, well, what happens if the matrix isn't square? What if A is in the space of

real matrices that are n by m, where n and m maybe aren't the same? Maybe they are the

same, but maybe they're not. And there is an equivalent decomposition. It's called the singular

value decomposition. It's like an eigendecomposition for non-square matrices.

So rather than writing our matrix as some w lambda w inverse, we're going to write it as some

product U times sigma times V with this dagger. The dagger here is conjugate transpose.

Transpose the matrix, and take the complex conjugate of all the elements, OK? I mentioned

last time that eigenvalues and eigenvectors could be complex, potentially, right? So whenever

we have that case where things can be complex, usually the transposition operation is

replaced with the conjugate transpose.

What are these different matrices. Well, let me tell you. U is a complex matrix. It maps from the

space N to R N to R N, so it's an n by n square matrix. Sigma is a real valued matrix, and it

lives in the space of n by n matrices.

V is a square matrix again, but it has dimensions m by m. Remember, A maps from R M to R

N, so that's what the sequence of products says. B maps from m to m. Sigma maps from m to

n. U maps from n to n. So this match from m to n as well.

Sigma is like lambda from before. It's a diagonal matrix. It only has diagonal elements. It's just

not square, but it only has diagonal elements, all of which will be positive. And then U and V

are called the left and right singular vectors. And they have special properties associated with

them, which I'll show you right now.

Any questions about how this decomposition is composed or made up? It looks just like the

eigendecomposition, but it can be applied to any matrix. Yes?

AUDIENCE: Quick question.

JAMES W. SWAN: Sure.



AUDIENCE: Do all matrices have this thing, or is it like the eigenvalues where some do and some don't.

JAMES W. SWAN: This is a great question. So all matrices are going to have a singular value decomposition. We

saw with the eigenvalue decomposition that there could be a case where the eigenvectors are

degenerate, and we can't write that full decomposition. All matrices are going to have this

decomposition.

So for some properties of this decomposition, U and V are what we call unitary matrices. I

talked about these before. Unitary matrices are ones for whom, if they're real valued, their

transpose is also their inverse.

If they're complex valued, and they're conjugate transpose is the equivalent of their inverse.

So U times U conjugate transpose will be identity. V times V conjugate transpose will be

identity.

Unitary matrices also have the property that they impart no stretch to a matrix-- or to vectors.

So their maps don't stretch. They're kind of like rotational matrices, right? They change

directions, but they don't stretch things out.

If I were to take A conjugate transpose and multiply it by A, that would be the same as taking U

sigma V conjugate transpose, and multiplying it by U sigma V. If I use the properties of matrix

multiplications and complex conjugate transposes, and work out what this expression is, I'll

find out that it's equivalent to V sigma conjugate transpose sigma V conjugate transpose.

Well this has exactly the same form as an eigendecomposition. An eigendecomposition of A

times A instead of an eigendecomposition of A. So V is the set of eigenvectors of A conjugate

transpose A, and sigma squared are the eigenvalues of A conjugate transpose times A.

And if I reverse the order of this multiplication-- so I do A times A conjugate transpose-- and

work it out, that would be U sigma sigma U. And so U are the eigenvectors of A A conjugate

transpose, and sigma squared are still the eigenvalues of A A conjugate transpose. So what

are these things U and V? They relate to the eigenvectors of the product of A with itself, this

particular product of A with itself, or this particular product of A with itself.

Sigma are the singular values. And all matrices possess this sort of a decomposition. They all

have a set of singular values and singular vectors. These sigmas are called the singular

values of the A. They have a particular name. I'm going to show you how you can use this



decomposition to do something you already know how to do, but how to do it formally.

What are some properties of the singular value decomposition? So if we take a matrix A and

we compute it's singular value decomposition, this is how you do it in Matlab. We'll find out, for

this matrix, U is identity. Sigma is identity with an extra column pasted on it. And B is also

identity. I mean, this is the simplest possible four by three matrix I can write down.

You don't have to know how to compute the singular value decomposition, you just need to

know that it can be computed in this way. You might be able to guess how to compute it based

on what we did with eigenvalues earlier and eigenvectors. It'll turn out some of the columns of

sigma will be non-zero right? There are three non-zero columns of sigma. And the columns of

V, they correspond to those columns of sigma, spanned the null space of the matrix A.

So the first three columns here are non-zero, the first three columns of V. I'm sorry, the first

three columns here are non-zero. The last column is 0.

The columns of sigma which are 0 correspond to a particular column in V, this last column

here, which lives in the null space of A. So you can see, if I take A and I multiply it by any

vector that's proportional to 0, 0, 0, 1, I'll get back 0. So the null space of A is spanned by all

these vectors corresponding to the 0 columns of sigma.

Some of the columns of sigma are non-zero. These first three columns. And the rows of U

corresponding to those three columns span the range of A. So if I do the singular value

decomposition of a matrix, and I look at U, V, and sigma and what they're composed of--

where sigma is 0 and non-zero, and the corresponding columns or rows of U and V-- then I

can figure out what vectors span the range and null space of the matrix A.

Here's another example. So here I have A. Now instead of being three rows by four columns,

it's four rows by three columns. And here's the singular value decomposition that comes out of

Matlab.

There are no vectors that live in the null space of A, and there are no 0 columns in sigma.

There's no corresponding columns in V. There are no vectors in the null space of A.

The range of A is spanned by the rows corresponding to the non-zero-- the rows of U

corresponding to the non-zero columns of sigma. So it's these three columns in the first three

rows. And these first three rows, clearly they span-- they describe the same range as the three

columns in A.



So the singular value decomposition gives us direct access to the null space and the range of

a matrix. That's handy. And it can be used in various ways. So here's one example where it

can be used.

Here I have a fingerprint. It's a bitmap. It's a square bit of data, like a matrix, and each of the

elements of the matrix takes on a value describing how dark or light that pixel. Let's say it's

grayscale, and it's value's between 0 and 255. That's pretty typical.

So I have this matrix, and each element to the matrix corresponds to a pixel. And I do a

singular value decomposition. Some of the singular values, the values of sigma, are bigger

than others. They're all positive, but some are bigger than others. The ones that are biggest in

magnitude carry the most information content about the matrix.

So we can do data compression by neglecting singular values that are smaller than some

threshold, and also neglecting the corresponding singular vectors. And that's what I've done

here. So here's the original bitmap of the fingerprint. I did the singular value decomposition,

and then I retained only the 50 biggest singular values and I left all the other singular values

out.

This bitmap was something like, I don't know, 300 pixels by 300 pixels, so there's like 300

singular values, but I got rid of 5/6 of the information content. I dropped 5/6 of the singular

vectors, and then I reconstructed the matrix from the singular values and those singular

vectors, and you get a faithful representation of the original fingerprint.

So the singular value decomposition says something about the information content in the

transformation that is the matrix, right? There are some transformations that are of lower

power or importance than others. And the magnitude of these singular values tell you what

they are. Does that makes sense?

How else can it be used? Well, one way it can be used is finding the least square solution to

the equation Ax equals b, where A is no longer a square matrix, OK? You've done this in other

contexts before where the equations are overspecified. We have more equations than

unknowns, like data fitting. You form the normal equations, you multiply both sides of Ax

equals b by A transpose, and then invert A transpose A.

You might not be too surprised, then, to think that singular value decomposition could be



useful here too. Since we already saw the data in a singular value decomposition corresponds

to eigenvectors and eigenvalues of this A transpose A, right? But there's a way to use this sort

of decomposition formally to solve problems that are both overspecified and underspecified.

Least squares means find the vector of solutions x that minimizes this function phi. Phi is the

length of the vector given by the difference between Ax and b. It's one measure of how far an

error our solution x is. So let's define the value x which is least in error. This is one definition of

least squares.

And I know the singular value decomposition of A. So A is U sigma times V. So I have U sigma

V times x. I can factor out U, and I've got a factor of U transpose, or U conjugate transpose

multiplying by b. So Ax minus b is the same as U times the quantity sigma V conjugate

transpose x minus U conjugate transpose b.

We want to know the x that minimizes this phi. It's an optimization problem. We'll talk in great

detail about these sorts of problems later.

This one is so easy to do, we can just work it out in a couple lines of text. We'll define a new

set of unknowns, y, which is V transpose times x, and a new right-hand side for a system of

equations p, which is U transpose times b. And then we can rewrite our function phi that we're

trying to minimize.

So phi then becomes U sigma y minus p. U is a unitary vector. It imparts no stretch in the two

norms, so this sigma y minus p doesn't get elongated by multiplication with U.

So it's length, the length of this, is the same as the length of sigma y minus p. You can prove

this. It's not very difficult to show at all. You use the definition of the two norm to prove it.

So phi is minimized by y's, which makes this norm smallest, make it closest to 0. Let r be the

number of non-zero singular values, the number of those sigmas which are not equal to 0.

That's also the rank of A.

Then I can rewrite phi as the sum from i equals 1 to r of sigma i i time y i minus p i squared.

That's parts of this length, this Euclidean length, for which sigma is non-zero. Plus the sum

from r plus 1 to n, the sum over the rest of the values of p, for which the corresponding sigmas

are 0.

I want to minimize phi, and the only thing that I can change to minimize it is what? What am I



free to pick in this equation in order to make phi as small as possible? Yeah?

AUDIENCE: y.

JAMES W. SWAN: y, so I need to choose the y's that make this phi as small as possible. What value should I

choose for the y's? What do you think?

AUDIENCE: [INAUDIBLE]

JAMES W. SWAN: Perfect, right? Choose y equals p i over sigma i i. Right, y i is p i over sigma i i. Then all of

these terms is 0. I can't make this sum any smaller than that. That fixes the value of y i up to r.

I can't do anything about this left over bit here. There's no choice of y that's going to make this

part and the smaller. It's just left over. It's some remainder that we can't make any smaller or

minimize an smaller. There isn't an exact solution to this problem, in many cases.

But one way this could be 0 is if r is equal to n. Then there are left over unspecified terms, and

then this y i equals p i over sigma i is the exact solution to the problem. So this is what you told

me.

Choose y i is p i over sigma i i for i bigger than 1 and smaller than r. There are going to be

values of y i that go between r plus 1 and m, because A was a vector that mapped from m to

n, right? So I have extra values of y that could be specified potentially.

If that's true, if r plus 1 is smaller than m, then there's some components of y that I don't get

to-- I can't specify, right? My system of equations is somehow underdetermined. I need some

external information to show me what values to pick for those y i. I don't know. I can't use

them.

Sometimes people just set y i equal to 0. That's sort of silly, but that's what's done. It's called

the minimum norm least square solution. y has minimum length, when you set all these other

components to 0. But the truth is, we can't specify those components, right? We need some

external information in order to specify them.

Once we know y, we can find x going back to our definition of what y is. So I multiply this

equation by V on both sides, and I'll get V y equals x. So I can find my least square solution to

the problem from the singular value decomposition. So I can find the least square solution to

both overdetermined and underdetermined problems using singular value decomposition.



It inherits all the properties you know of solving the normal equations, multiplying by A

transpose the entire equation, and solving for a least square solution that way. But that's only

good for overdetermined systems of equations. This can work for underdetermined equations

as well. And maybe we do have extraneous information that lets us specify these other

components somehow. Maybe we do a separate optimization that chooses from all possible

solutions where these y i's are free, and picks the best one subject to some other constraint.

Does it makes sense? OK, that's the last decomposition we're going to talk about. It's as

expensive to compute the singular value decomposition as it is to solve a system of equations.

You might have guessed that it's got an order N cubed flavor to it.

It's kind of inescapable that we run up against those computational difficulties, order N cubed

computational complexity. And there are many problems of practical interest, particularly

solutions of PDEs, for which that's not going to cut it. Where you couldn't solve the problem

with that sort of scaling in time. You couldn't compute the Gaussian elimination, or the singular

value decomposition, or an eigenvalue decomposition. It won't work.

And in those cases, we appeal to not exact solution methods, but approximate solution

methods. So instead of trying to get an exact solution, we'll try to formulate one that's good

enough. We already know the computer introduces numerical error anyways. Maybe we don't

need machine precision in our solution or something close to machine precision in our

solution. Maybe we're solving engineering problem, and we're willing to accept relative errors

on the order of 10 to the minus 3 or 10 to the minus 5, some specified tolerance that we apply

to the problem.

And in those circumstances, we use iterative methods to solve systems of equations instead of

exact methods, elimination methods, or metrics decomposition methods. These algorithms are

all based on iterative refinement of an initial guess. So if we have some system of equations

we're trying to solve, Ax equals b, we'll formulate some linear map, right? xi plus 1 will be

some matrix C times x i plus some little vector c where x i is my last best guess for the solution

to this problem, and x i plus 1 is my next best guess for the solution to this problem. And I'm

hoping, as I apply this map more and more times, I'm creeping closer to the exact solution to

the original system of equations.

The map will converge when x i plus 1 approaches x i, when the map isn't making any

changes to the vector anymore. And the converged value will be a solution when x i-- which is



equal to i minus c inverse times c, if I replace x i was 1 with x i appear, so I say that my map

has converged-- when this value is equivalent to A inverse times B, when it's a solution to the

original problem, right? So my map may converge. It may not converge to a solution of the

problem I like, but if it satisfies this condition, then has converged to be a solution of the

problem that I like as well.

And so it's all about using this C here and this little c here so that this map converges to

solution of the problem I'm after. And there are lots of schemes for doing this. Some of them

are kind of ad hoc. I'm going to show you one right now. And then when we do optimization,

we'll talk about a more formal way of doing this for which you can guarantee very rapid

convergence to a solution.

So here's a system of equations I'd like to solve. It's not a very big one. It doesn't really make

sense to solve this one iteratively, but it's a nice illustration. One way to go about formulating

this map is to split this matrix into two parts.

So I'll split it into a diagonal part and an off diagonal part. So I haven't changed the problem at

all by doing that. And then I'm going to rename this x x i plus 1, and I'm going to rename this x

x i. And then move this matrix vector product to the other side of the equation.

And here's my map. Of course, this matrix multiplied doesn't make any-- it's not useful to write

it out explicitly. This is just identity. So I can drop this entirely. This is just x i plus one.

So here's my map. Take an initial guess, multiply it by this matrix, add the vector 1, 0, and

repeat over and over and over again. Hopefully-- we don't really know-- but hopefully, it's

going to converge to a solution of the original linear equations.

I didn't make up that method. That's a method called Jacobi Iteration. And the strategy is to

split the matrix A into two parts-- a sum of its diagonal elements, and it's off diagonal

elements-- and rewrite the original equations as an iterative map.

So D times x i plus 1 is equal to minus r times x i plus b. Or x i plus 1 is D inverse times minus r

x i plus b. If the equations converge, then D plus r times x i has to be equal to b, we will have

found a solution. If it converges, right? If these iterations approach a steady value. If they don't

change from iteration to iteration. Is

The nice thing about the Jacobi method is it turns the hard problem, the order N cubed

problem of computing A inverse B, into a succession of easy problems, D inverse times some



vector C. How many calculations does it take to compute that D inverse? N, that's right, order

N.

It's just a diagonal matrix. I invert each of its diagonal elements, and I'm done. So I went from

order N cubed, which was going to be hard, into a succession of order N problems. So as long

as it doesn't take me order N squared iterations to get to the solution that I want, I'm going to

be OK. This is going to be a viable way to solve this problem faster than finding the exact

solution.

How do you know that it converges? That's the question. Is this thing actually going to

converge or not, or are these iterations just going to run on and on forever? Well, one way to

check whether it will converge or not is to go back up to this equation here, and substitute b

equals Ax, where x is the exact solution to the problem.

And you can transform, then, this equation into one that looks like x i plus 1 minus x equal to

minus D inverse times r x i minus x. And if I take the norm of both sides and I apply our normal

equality-- where the norm of a matrix vector product is smaller than the product of the norms

of the matrices of the vectors-- then I can get a ratio like this. That the absolute error in

iteration I plus 1 divided by the absolute error in iteration i is smaller than the norm of this

matrix.

So if I'm converging, then what I expect is this ratio should be smaller than 1. The error in my

next approximation should be smaller than the error in my current approximation. That makes

sense? So that means that I would hope that the norm of this matrix is also smaller than 1.

If it is, then I'm going to be guaranteed to converge. So for a particular coefficient matrix, for a

system of linear equations I'm trying to solve, I may be able to find-- I may find that this is true.

And then I can apply this method, and I'll converge to a solution.

We call this sort of convergence linear. Whatever this number is, it tells me the fraction by

which the error is reduced from iteration to iteration. So suppose this is 1/10. Then the

absolute error is going to be reduced by a factor of 10 in each iteration. It's not going to be

1/10 usually. It's going to be something that's a little bit bigger than that typically, but that's the

idea.

You can show-- I would encourage you to try to work this out on your own-- but you can show

that the infinity norm of this product-- infinity norm of this product is equal to this. And if I ask



that the infinity norm of this product be smaller than 1, that's guaranteed when the diagonal

values of the matrix and absolute value are bigger than the sum of the off diagonal values in a

particular row or a particular column. And that kind of matrix we call diagonally dominant. The

diagonal values are bigger than the sum and absolute value of the off diagonal pieces.

So diagonally dominant matrices, which come up quite often, can be-- those linear equations

based on those matrices can be solved reasonable efficiency using the Jacobi method. There

are better methods to choose. I'll show you one in a second. But you can guarantee that this is

going to converge to a solution, and that the solution will be the right solution to the linear

equations you were trying to solve.

So if the goal is just to turn hard problems into easier to solve problems, then there are other

natural ways to want to split a matrix. So maybe you want to split into A lower triangular part

which contains the diagonal elements of A, and an upper triangular part which has no diagonal

elements of A. We just split this thing apart. And then we could rewrite our system of equations

is an iterative map like this, L times x i plus 1 is minus U times x i plus b.

All I have to do is invert l to find my next iteration. And how expensive computationally is it to

solve a system of equations which is triangular? This is a process we call back substitution. Its

order--

AUDIENCE: N squared.

JAMES W. SWAN: --N squared. So we still beat N cubed. One would hope that it doesn't require too many

iterations to do this. But in principle, we can do this order N squared operations many times.

And it'll turn out that this sort of a map converges to the solution that we're after.

It converges when matrices are either diagonally dominant as before, or they're symmetric

and they're positive definite. Positive definite means all the eigenvalues of the matrix are

bigger than 0. So try the iterative method solving some equations and see how we convert.

Yes?

AUDIENCE: How do you justify ignoring the diagonal elements in that method?

JAMES W. SWAN: So the question was, how do you justify ignoring the diagonal elements in this method. Maybe

I was going too fast or I misspoke. So I'm going to split A into a lower triangular matrix that has

all the diagonal elements, and U is the upper parts with none of those diagonal elements on it.



Does that make sense?

AUDIENCE: Yeah.

JAMES W. SWAN: Thank you for asking that question. I hope that's clear. l holds onto the diagonal pieces and U

takes those away. So let's try it.

On a matrix like this, the exact solution to this system of equations is 3/4, 1/2, and 1/4. All right,

we'll try Jacobi, we'll have to give it some initial guess for the solution, right? We're talking

about places where you can derive those initial guesses from later on in the course, but we

have to start the iterative process with some guess at the solutions.

So here's an initial guess. We'll apply this map. Here's Gauss-Seidel with the same initial

guess, and we'll apply this map. They're both linearly convergent, so the relative error will go

down by a fixed factor after each iteration.

Iteration one, the relative error in Jacobi will be 38%. In Gauss-Seidel, it'll be 40%. If we apply

this all the way down to 10 iterations, the relative error Jacobi will be 1.7%, and the relative

error in Gauss-Seidel 0.08%.

And we can go on and on with these iterations if we want until we get sufficiently converged,

we get to a point where the relative error is small enough that we're happy to accept this

answer as a solution to our system of equations. So we traded the burden of doing all these

calculations to do elimination for a faster, less computationally complex methodology. But the

trade off was we don't get an exact solution anymore. We're going to have finite precision in

the result, and we have to specify the tolerance that we want to converge to.

We're going to see now-- this is the hook into the next part of that class-- we're going to talk

about solutions of nonlinear equations next for which there are almost no non-linear equations

that we can solve exactly. They all have to be solved using these iterative methods. You can

use these iterative methods for linear equations. It's very common to do it this way.

In my group, we solve lots of systems of linear equations associated with hydrodynamic

problems. These come up when you're talking about, say, low Reynolds number flows, which

are linear sorts of fluid flow problems. They're big. It's really hard to do Gaussian elimination,

so you apply different iterative methods.

You can do Gauss-Seidel. You can do Jacobi. We'll learn about more advanced ones like



PCG, which you're applying on your homework now, and you should be seeing that it

converges relatively quickly in cases where exact elimination doesn't work. We'll learn,

actually, how to do that method. That's one that we apply in my own group. It's pretty common

to use out there. Yes?

AUDIENCE: One question, is that that Gauss, [INAUDIBLE]

JAMES W. SWAN: Order N squared.

AUDIENCE: Yeah, that's what I meant. So now we've got an [INAUDIBLE]. So we basically have

[INAUDIBLE] iterations, right?

JAMES W. SWAN: This is a wonderful question. So this is a pathological problem in the sense that it requires a lot

of calculations to get an iterative solution here. We haven't gotten to an end that's big enough

that the computational complexities crossover. So for small Ns, probably the factor in front of

N-- whatever number that is-- and maybe even the smaller factors, order N squared factors on

that order N cubed, play a big role in how long it takes to actually complete this thing. But

modern problems are so big that we almost always are running out to Ns that are large

enough that we see a crossover.

You'll see this in your homework this week. You won't see this crossover at N equals 3. You're

going to see it out at N equals 500 or 1,200, big problems. Then we're going to encounter this

crossover. That's a wonderful question. So first small system sizes, iterative methods maybe

don't buy you much.

I suppose it depends on the application though, right? If you're doing something that involves

solving problems on embedded hardware, in some sort of sensor or control valve, there may

be very limited memory or computational capacity available to you. And you may actually apply

an iterative method like this to a problem that that controller needs to solve, for example. It just

may not have the capability of storing and inverting what we would consider, today, a relatively

small matrix because the hardware doesn't have that sort of capability.

So there could be cases where you might choose something that's slower but feasible, versus

something that's faster and exact, because there are other constraints. They do exist, but

modern computers are pretty efficient. Your cell phone is faster than the fastest computers in

the world 20 years ago. We're doing OK. So we've got to get out to big system sizes, big

problem sizes, before this starts to pay off. But it does for many practical problems.



OK I'll close with this, because this is the hook into solving nonlinear equations. So I showed

you these two iterative methods, and they kind of had stringent requirements for when they

were actually going to converge, right? I had to have a diagonally dominant system of

equations for Jacobi to converge. I had to have diagonal dominance or symmetric positive

definite matrices. These things exist and they come up in lots of physical problems, but I had

to have it in order for Gauss-Seidel to converge.

What if I have a system of equations that doesn't work that way? Or what if I have an iterative

map that I like for some reason, but it doesn't appear to converge? Maybe it converges under

some circumstances, but not others. Well, there's a way to modify these iterative maps, called

successive over-relaxation, which can help promote convergence.

So suppose we have an iterative map like this, x i plus 1 is some function of the previous

iteration value. Doesn't matter what it is. It could be linear, could be non-linear. We don't

actually care.

The sought after solution is found when x i plus 1 is equal to x i. So this map is one the

convergence to the exact solution of the problem that we want. We've somehow guaranteed

that that's the case, but it has to converge.

One way to modify that map is to say x i plus 1 is 1 minus some scalar value omega times x i

plus omega times f. You can confirm that if you substitute x i plus 1 equals x i into this

equation, you'll come up with the same fixed points of this iterative map x i is equal to f of x i.

So you haven't changed what value will converge here, but you've affected the rate at which it

converges.

Here you're saying x i plus 1 is some fraction of my previous solution plus some fraction of this

f. And I get to control how big those different fractions. So if things aren't converging well for a

map like this, then I could try successive over-relaxation, and I could adjust this relaxation

parameter to be some fraction, some number between 0 and 1, until I start to observe

convergence. And there are some rules one can use to try to promote convergence with this

kind of successive over-relaxation.

This is a very generic technique that one can apply. If you have any iterative map you're trying

to apply, it should go to the solution you want but it doesn't converge for some reason, then

you can use this relaxation technique to promote convergence to the solution. You may slow



the convergence way down.

It may be very slow to converge, but it will converge. And after all, an answer is better than no

answer, no matter how long it takes to get it. So sometimes you've got to get these things by

hook or by crook.

So for example, you can apply this to Jacobi. This was the original Jacobi map. And we just

take that. We add 1 minus omega times x i plus omega times this factor over here. And now

we can choose omega so that this solution converges. We always make omega small enough

so that the diagonal values of our matrix appear big enough that the matrix looks like it's

diagonally dominated.

You could go back to that same convergence analysis that I showed you before and try to

apply it to this over-relaxation form of Jacobi and see that, while there's always going to be

some value of omega that's small enough, that this thing will converge. It will look effectively

diagonally dominant, because omega inverse times D will be big enough, or omega times D

inverse will be small enough. Does that make sense? You can apply the same sort of damping

method to Gauss-Seidel as well. It's very common to do this.

The relaxation parameter acts like an effective increase in the eigenvalues of the matrix. So

you can think about L. That's a lower triangular matrix. It's diagonal values are its eigenvalues.

The diagonal values of L inverse-- well, 1 over those diagonal values are the eigenvalues of L

inverse.

And so if we make omega very small, then we make the eigenvalues of L inverse very small,

or the eigenvalues or L very big. And again, the matrix starts to look diagonally dominated.

And you can promote convergence in this way.

So even though this may be slow, you can use it to guarantee convergence of some iterative

procedures, not just for linear equations, but for non-linear equations as well. And we'll see,

there are good ways of choosing omega for certain classes of non-linear equations. We'll

apply Newton-Raphson method, and then will damp it using exactly the sort of procedure. And

I'll show you how you can choose a nearly optimal value for omega to promote convergence to

the solution.

Any questions? No, let me address one more thing before you go. We've scheduled times for

the quizzes. They are going to be in the evenings on the dates that are specified on the



syllabus.

We wanted to do them during the daytime. It was really difficult to schedule a room that was

big enough for this class, so they have to be from 7:00 to 9:00 in the gymnasium. I apologize

for that. We spent several days looking around trying to find a place where we could put

everybody so you would all get the same experience in the quiz.

I know that the November quiz comes back to back with the thermodynamics exam as well.

That's frustrating. Thermodynamics is the next day. That week is tricky. That's AICHE, so most

of the faculty have to travel. We won't be able to teach, but you won't have classes one of

those days so you have extra time to study. And Columbus Day also falls in that week, so

there's no way to put three exams in four days without having them come right back to back.

Believe me, we thought about this and tried to get things scheduled as efficiently as we could

for you, but sometimes there are constraints that are outside of our control. But the quiz times

are set. There's going to be done in October and one in November. They'll be in the evening,

and they'll be in the gymnasium. I'll give you directions to it before the exam, just say you know

exactly where to go, OK? Thank you, guys.


