
10.34 Numerical Methods Applied to Chemical Engineering Fall 2015

Quiz #1 Review

Study guide based on notes developed by J.A. Paulson, modified by K. Severson

Linear Algebra

We’ve covered three major topics in linear algebra: characterizing matrices, linear equations, and
eigenvalue problems. We’ll start with some preliminaries for notation in linear algebra and then
review each of these topics.

Vectors

1. A vector is an ordered set of numbers e.g. x = [x1, . . . xN]

2. Transpose operator
x 1x2x = . x
.

2

.

 , xT =
[
x1 · · · xN

xN

]
.

N

3. Inner product given by xTy = x · y =
∑

xiyi. Only works for same size vectors and the
i=1

result is a scalar.

4. Outer product (dyadic) given by xyT = x⊗ y. Can have any size vectors and the result is a
matrix.

Matrices

a11 a12 · · · a1M
a21 a22 a2M

1. A matrix has ordered sets of numbers, e.g. A =

 . .

·
.
· ·

. . A matrix repre-
. . . .

. . . .

aN1 aN2

· · · aNM

sents a transformation. It can also be thought of as a map between vector

spaces.

2. Given C = AT , the elements of C are Cij = Aji.

N

3. Trace is denoted Tr A =
∑

Aii (sum of diagonals). Only valid for square matrices!
i=1

4. Matrix-vector product y = Ax. For A ∈ RN×M , this scales as O(NM). Column-view,
y1

A11 A12 · · · A

x

A

A

A

 1M 1

 y2 A21 A22 M . = . .
·
.
· · A2 x2

.
yN AN1 AN2 ANM

.
xM

 11 12 1M

 = x1 A21
.
+ x2

A22 A2M
. + +

. .. .
· · · xM

...

· · · AN1 AN2

ANM

1

5. Matrix-matrix product C = AB. For A ∈ RN×M and B ∈ RM×P , this scales as O(NMP).
Remember properties in Lecture 1 slide 26.

6. Matrix inverse A−1A = AA−1 = I. Exists if A is non-singular.

7. Determinant of a matrix det(A) can be defined in terms of its minors,

N

det(A) =
∑

(
i=1

−1)i+j ︸︷︷︸Aij Mij(A)

cofactor

︸ ︷︷
minor

where the minor Mij(A) is simply the matrix A with the ith ro

︸
w and jth column removed.

When A ∈ RN×N , then Mij(A) ∈ RN−1×N−1. Only valid for square matrices! Remember
determinant properties e.g., det(AT) = det(A) and det(AB) = det(A)det(B).

Characterizing vectors and matrices

1. Vector norms

(a) A vector norm maps a vector to a scalar and has three properties:

‖x‖ ≥ 0 , ‖x‖ = 0 iff x = 0

‖x+x‖ ≤ ‖x‖+‖y‖ Note that this property is referred to as the triangle inequality.

‖αx‖ = |α|‖x‖ where α ∈ C
N 1/p

(b) The most commonly used vector norms in our class are p-norms: ‖x‖p =

(∑
i=1

|xi|p

where p

)
≥ 1.

2. Matrix norms

(a) A matrix norm also maps a matrix to a scalar.

(b) In class we discussed the induced norm

‖A‖p = maxx6=0
‖Ax‖p
‖x‖p

(c) The induced norm can be interpreted as “how much can can A stretch x”

(d) We looked at several specific induced norms:

‖A‖2 = max σ∑i where σi are the singular values of A

‖A‖ M= max∞ j=1 |aij |
‖A‖1 = max

∑N
i=1 |aij |

(e) We also used several properties of matrix norms:

Cauchy-Schwarz: ‖AB‖p ≤ ‖A‖p‖B‖p.
Triangle inequality: ‖A + B‖p ≤ ‖A‖p + ‖B‖p.

3. Condition Number

(a) The condition number, κ(A), is a measure of how numerical error is magnified in solu-
tions of linear equations; log10κ(A) give the number of digits lost.

(b) For invertible matrices, κ(A) = ‖A‖‖A−1‖. In the 2-norm, κ(A) = σmax
σmin

(c) For a unitary matrix, Q, κ(Q) = 1.

2

4. Singular Matrices A matrix, A ∈ RN×N , that is nonsingular is invertible. There are many
equivalent descriptions of a nonsingular matrix, some of which are listed below.

(a) rank(A) = N e.g. the matrix has full rank

(b) det(A) 6= 0

(c) 0 is not an eigenvalue of A

(d) 0 is not a singular value of A

(e) A has a trivial null space

(f) The dimension of the range space of A is N

(g) The columns of A of linearly independent

5. Vector spaces and the four fundamental subspaces

(a) A vector space is a “special” set of vectors that satisfy the following properties:

Closed under addition: x,y ∈ S =⇒ x + y ∈ S.

Closed under scalar multiplication: x ∈ S =⇒ cx ∈ S.

Contains the null vector: 0.

Has an additive inverse: x ∈ S =⇒ −x ∈ S : x + (−x) = 0.

M

(b) Column/range space: R(A) = span{Ac ,Ac , . . . ,Ac } =

{∑
λ Ac | λ ∈ R, Ac

1 2 M i i i i

i=1

∈

RN
}

.

(c) Null space: N(A) =
{
x ∈ RM : Ax = 0 .

N

(d) Row space: R(AT) = span{Ar
1,A

r
2, . . . ,

}
Ar
M} =

{∑
λiA

r
i | λi ∈ R, Ar

i ∈ RM
}

.

(e) Left null space: N(AT) =

(f) The rank of a matrix is

{ i=1

x ∈ RN : ATx = 0
}

.

the dimension of its column space, r = dim R(A), r ≤
min(N,M).

(g) The rank nullity theorem states, dim N(A) = M − r

Linear equations, Ax = b

We spent a lot of time analyzing the linear equation, Ax = b where A ∈ RN×M , x ∈ RM and
b ∈ RN .

1. Existence and uniqueness of solutions

(a) A solution exists iff b ∈ R(A)

(b) A solution is unique iff dim N(A) = 0

(c) From our list of nonsingular synonyms, we know this means that the matrix is square
and invertible if the solution exists and is unique.

3

2. Gaussian elimination transforms a matrix into its upper triangular form. It takes O(N3)
operations. Pivoting of the rows may be required to avoid pivots equaling zero or to help
with numerical stability. The upper triangular system is solved using back substitution which
takes O(N2) operations.

(a) When applying Gaussian elimination to sparse systems, we want to try and exploit
the sparsity pattern. At a minimum, we can use a special storage matrix to decrease
the memory requires (this was what we did in HW1). However, applying Gaussian
elimination will lead to fill-in, which is undesirable. One way to avoid fill-in is to re-
order the matrix by using permutations. Note that this is a type of preconditioning. A
permutation matrix looks like

0 1 0 · · · 01 0 0 · · · 0

P =
0 0 1 · · · 0

0 0 0 · · · 1

(b) Eventually, N is too large and Gaussian elimination is not reasonable. At this point, you

will consider an iterative method such as Jacobi iterations or Gauss-Seidel iterations.
The idea of these methods is to turn a hard problem into many easier problems.

i. Jacobi iterations split A in D+R where D are the diagonal elements and R are the
off-diagonal elements. Jacobi iterations work well for diagonally dominant systems,
i.e. ‖D−1R‖ < 1.

ii. Gauss-Seidel iterations split A in L + U where L are the lower triangular elements
and U are the upper triangular elements (excluding the diagonal). Gauss-Seidel
converges if ‖L−1U‖ < 1.

3. Singular Value Decomposition

¯(a) We can write A = UΣV† where V† = VT denotes the conjugate transpose. Here Σ is
a diagonal matrix with elements Σ2

ii = λi(A
†A), V is a matrix whose columns contain

the eigenvectors of A†A, and U is a matrix whose columns contain the eigenvectors of
AA†.

(b) σi = Σii are the singular values of A.

(c) Like an eigendecomposition for non-square matrices A ∈ RN×M .

(d) Can be useful for things such as data compression/matrix approximation.

Eigenvalue problems, Av = λv

The eigenvectors of a matrix are special vectors that are “stretched” on multiplication by the
matrix. They solve the equation Av = λv where A ∈ RN×N , v ∈ CN and λ ∈ C. This is a
nonlinear system of equations with N equations and N + 1 unknowns, therefore eigenvectors are
not unique.

1. To solve the eigenvalue problem, we solve det(A − λI) = 0 = pN (λ) where pN (λ) is the
characteristic polynomial. The roots of this polynomial are the eigenvalues.

4

2. Complex eigenvalues also appear in conjugate pairs.

3. For a diagonal or triangular matrix, the eigenvalues are the diagonal elements.

4. The algebraic multiplicity of an eigenvalue is the number of times it is repeated.

5. The geometric multiplicity of an eigenvalue is the number of linearly independent eigenvectors
that correspond to the eigenvalue, i.e. dim N(A−λI). If the eigenvalue is unique, there is only
one corresponding eigenvector but if algebraic multiplicity is M , 1 ≤ dim N(A− λI) ≤M .

6. A can be written AV = VΛ

λ

A
[
v1 v2 · · · vN

]
=
[
v1 v2 · · · vN

1

] λ2 . . .

λN

If A has a complete set of eigenvectors, V is invertible and A is diagonalizable, A = VΛV−1.

7. If A is real and symmetric, it has a complete set of orthonormal eigenvectors and the matrix
of eigenvectors is unitary.

Systems of Nonlinear Equations

We’ve really already seen this before because we solved eigenvalue problems however that was only
for polynomials. Let’s consider a general system of nonlinear equations.

f(x) = 0

where f : RN 7→ RN and x ∈ RN . Given some f(x), we want to find roots x? such that f(x?) = 0.
There could no solutions, one locally unique solution, many locally unique solutions or infinite
solutions.

1. We will assume that in the neighborhood close to a root, the function is approximately linear.
Linearizing a general nonlinear function around x0 using the Taylor series method gives,

f(x) = f(x0) + J(x0)(x− x0) +O(‖x− x0‖22)

where J(x) is the Jacobian and is defined as

J(x) =

∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xN

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xN

...
... · · ·

...
∂fN
∂x1

∂fN
∂x2

· · · ∂fN
∂xN

5

As analytic forms of the Jacobian J(x) are difficult (or impossible) to come by, we might
have to turn to an alternative method for approximating J(x). One simple method is “finite
differencing” such that the columns of the Jacobian can be evaluated as,

f
JC

(x + εej)
j (x) =

− f(x)

ε

where ej =
[
0 · · · 0 1 0 · · · T

0 is all zeros except for a 1 in the jth element. This
requires 2N function evaluations to compute

]
(2 for the difference in the numerator and N for

each column).

2. Convergence criteria are needed to determine when to stop.

(a) ‖f(xi+1)‖p ≤ ε
(b) ‖xi+1 − xi‖p ≤ εR‖xi+1‖p + εA

(c) The relative tolerance will dominate when the norm of x is large while the absolute
tolerance will dominant when the norm of x is small.

3. The rate of convergence can be examined based on,

p
lim
‖xi+1 − x?‖

k→∞
=

‖xi − x?‖q
C

p

q = 1 and 0 < C < 1 is linear convergence, q > 1 (or q = 1 and C = 0) is super-linear
convergence, and q = 2 is quadratic convergence.

4. Newton-Raphson method

(a) The iterative map is,

xi+1 = x 1
i − [J(xi)]

− f(xi)

J(xi) is not actually inverted! You solve a linear system of equations and should take
advantage of sparsity when possible.

(b) Newton-Raphson converges quadratically when the Jacobian is non-singular and quadratic
convergence is guaranteed only when the iterates are sufficiently near the root. This
means good initial guesses are essential to the success of Netwon-Raphson. Bad initial
guesses can lead to very chaotic behavior in your iterates and may not converge at all.

(c) Broyden’s method is a special case of Newton-Raphson in which the secant method is
used to develop a coarse approximation of the derivative. This method uses rank-1
approximation for the Jacobian,

f(xi)(x
i

− T
i xi

J(xi) = J(x) +
−1)

‖xi − xi+1‖22
This method is called rank-one because the outer product of two vectors, f(xi) and
(xi−xi−1), has rank of one. In fact, every column of f(x T

i)(xi−xi−1) is a scalar multiple
of f(xi). This method allows us to generate an iterative formula for the Jacobian inverse,

J(x)−1f(x)(x − x)TJ(x)−1i
) − i
i
−1 i−1 i i

J(x = J() 1 − −1 −1
xi−1 .

‖xi − xi 1‖22 + (x− i − xi−1)TJ(x 1
i−1)− f(xi)

that saves us computation time at the cost of accuracy.

6

(d) Damped Newton-Raphson introduces a scaling factor to the NR iterative map,

xi+1 = xi − α[J(xi)]
−1f(xi)

where α = arg min‖f(xi−α[J(xi)]
−1f(xi))‖p (find the optimal α value that decreases the

0≤α≤1
function value as much as possible in a single step). Finding this damping factor is as
hard as finding the root. An approximate method is to use a line search that continually
reduces α by 2 until the step decreases the function value. The damped Newton-Raphson
is globally convergent but may converge to roots or local minima/maxima.

5. Continuation, Homotopy, and Bifurcation

(a) Continuation transforms the hard problem we want to solve to an easier one by in-
troducing/varying a parameter. Knowing that you found all the roots is not always
easy/possible.

(b) Homotopy is the transformation from one problem to another. We seek the roots x?(λ)
to the following system of equations,

h(x, λ) = λf(x) + (1− λ)g(x)

where h(x, 0) = g(x) such that x?(0) are the roots of g(x) and h(x, 1) = f(x) such that
x?(1) are the roots of f(x). We create a smooth transition from g(x) to f(x) by varying
λ in small discrete increments {λi} from 0 to 1 where the solution x?(λi) is used as the
initial guess for obtaining x?(λi+1).

(c) During the homotopy procedure, the Jacobian of h(x?, λ) at some λ, denoted Jh(x?(λ), λ),
can become singular such that the det(Jh(x?(λ), λ)) = 0. This can be indicative of two
phenomena: turning points and bifurcations. A turning point is when the solution
branch begins to curve back such that the branch was being traced with increasing λ
suddenly needs to be traced with a decreasing λ. One way to account for this is to
parameterize the roots and homotopy parameter in terms of distance s traveled along
the solution curve/branch i.e., x?(λ(s)) and λ(s). We can use the arclength constraint
to determine how to change the homotopy parameter,∥∥∥ d∥dsx?(λ(s))

∥∥∥∥2
2

+

(
d

ds
λ(s)

)2

= 1

Note that the change in the parameter d λ(s) appears as squared so we need some policyds
for determining what sign (positive/increasing or negative/decreasing) to take.

(d) A bifurcation is when additional solutions appear continuously at some λ, i.e., a problem
switches from having 1 solution to many solutions as λ is varied. This happens at a λ
when det(Jh(x?(λ), λ)) = 0.

Optimization

Optimization problems consider

min f(x) argmin f(x)
x∈D x∈D

where f(x) is the objective function, x are the “design alternatives” and D is the feasible set.

7

1. Maximizing f(x) is equivalent to minimizing −f(x) so we only need to look at one (commonly
minimization).

2. The goal is to find x? ∈ D such that f(x?) < f(x) for all x ∈ D. Solution is not necessarily
unique as there could be multiple x? in D. If f(x) is convex, it has a single global minimum.

3. If D is a closed set, the problem of finding the minimum is called constrained optimization. If
D is an open set RN , the problem of finding the minimum is called unconstrained optimization
(x can take on any values in RN ; no restriction).

4. Unconstrained optimization problems have a critical point when the gradient g(x) = ∇f(x) =
0 (assuming the function is differentiable).

5. For a point to be a minimum, all the eigenvalues of the Hessian at the minimum H(x?) must
be positive. If the eigenvalues are all negative, x? is a local maximum. If the eigenvalues are
both positive and negative, then x? is a saddle point. If none of these are satisfied, the test
is inconclusive and higher derivatives must be checked to characterize the critical point.

6. Steepest Descent

(a) The direction of steepest descent is: di = −g(xi). This makes you go downhill fastest.

(b) Iterative map: xi+1 = xi − αig(xi).

(c) For small values of αi, the iterates continue to reduce the function value until g(xi) = 0
(near zero within a norm tolerance).

(d) Ideally, we would pick αi to lead to the smallest value of f(xi+1) but this is its own
optimization that is not easy. We can estimate an optimal αi using a Taylor series
expansion of f(x) about xi evaluated at xi+1,

g(xi)
Tg(xi)

αi =
g(xi)TH(xi)g(xi)

This will be the exact optimal αi if f is quadratic with respect to xi.

(e) Converges to local minima and saddle points so need to check Hessian to be sure critical
point is minima.

7. Conjugate Gradient Method

(a) Considers the following minimization

1
min f(x) =
x

xTAx− bTx = ‖Ax
2

− b‖22

which can be derived analytically to be g(x?) = Ax? − b = 0 with H(x) = A. Nice
way to solve linear equations using optimization instead of direct methods like Gaussian
elimination.

(b) Iterative map: xi+1 = xi − αip(xi).

(c) Chooses descent directions (not necessarily steepest descent), p1, p2, .., pN , that are said
to be conjugate, i.e. pTi+1Api = 0.

(d) Used to solve linear equations in O(N) operations (only for symmetric positive definite
matrices). The actual matrix is never needed as we only need to compute its action on
vectors Ay.

8

(e) More sophisticated variations of the conjugate graident methods exists for non-symmetric
matrices (e.g,. biconjugate gradient method) and non-linear equations.

8. Newton-Raphson for Optimization

(a) Finding local minima in optimization is equivalent to finding the roots of the gradient
g(x) = ∇f(x) = 0. We can imagine applying the exact same Newton-Raphson tech-
niques discussed above for the gradient. In this case, the Jacobian of the gradient is the
Hessian of the function. The Newton-Raphson map for optimization is then,

xi+1 = xi − [H(xi)]
−1g(xi)

(b) This is locally convergent and the accuracy of the iterates improves quadratically (just
as before)!

9. Trust-Region Methods

(a) Trust-region methods choose the Newton-Raphson direction when the quadratic approx-
imation is good and the steepest descent direction when it is not.

(b) The size of the trust region radius can be set arbitrarily starts with

This radius grows or shrinks depending on which of the two steps we choose. If Newton-
Raphson is chosen, GROW the trust-radius when the function was smaller than pre-
dicted, otherwise, SHRINK the trust-radius. If steepest descent was chose, keep the
trust-radius the same.

(c) Can use a “dog-leg step” when the steepest descent direction is chosen. Here the steepest
decent move is taken and when it is within the trust-radius, an additional step in the
Newton-Raphson direction is taken to touch the boundary of the trust-region.

10. Lagrange multipliers

(a) All of the methods up to this point haven’t consider constraints. Lagrange multipliers
are one way to handle the problem

minimizef(x)

subject to c(x) = 0

(b) A solution to this problem satisfies(
g(x)− Jcx

Tλ
= 0

c(x) = 0

)
where λ is a vector of “Lagrange multipliers”.

11. Interior point methods

(a) Our optimization problem could also have inequality constaints

minimizef(x)

subject to h(x) ≥ 0

9

MATLAB®(1)

(b) Interior point methods consider the problem

N

minf(x)− µ
∑

log(hi(x))
i=1

as µ→ 0+

(c) The log function is chosen as the barrier because it is easy to find the gradient.

(d) The parameter µ can be varied using a homotopy procedure.

Miscellaneous

1. “Big O” Notation for denoting computational complexity

f)2. Taylor series expansion: f(x =
∑∞ (n)(a) n=0 n! (x−a)n = f(a)+f ′(a)(x−a)+ 1

2f
′′(a)(x−a)2 +

1f6
′′′(a)(x− a)3 + · · ·

3. Basic syntax

*Disclaimer: This document in not the gospel of numerical. There may be typos and you should
always review your notes! Good luck with the exam!

10

MATLAB

MIT OpenCourseWare
https://ocw.mit.edu

10.34 Numerical Methods Applied to Chemical Engineering
Fall 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

