
10.34 Numerical Methods Applied to Chemical Eng.

Lectures 28 & 30: Probability Theory

1 Experiments, Events, and Probabilities

1.1 Experiments

The notion of probability is defined with respect to an underlying experiment. An exper-
iment can be, for example, flipping a coin or measuring the temperature in a chemical
reactor. An experiment is defined by the set of outcomes, E. If the experiment is flipping
a coin, then E = {heads, tails}. If the experiment is measuring the temperature in a
reactor T in degrees K, then E is the set of all nonnegative real numbers, E = R+.

A single performance of an experiment is called a trial. In each trial, a single outcome
ξ ∈ E is observed.

1.2 Events

A subset of A ⊂ E is called an event. For example, in the coin-flipping experiment,
{heads} is an event. In the temperature measurement experiment, {100} is an event
interpreted as ‘the measured temperature is 100 K ’. The interval [270, 290] is an event
interpreted as ‘the measured temperature is in the interval [270, 290] K’.

Consider a single trial in which the outcome ξ ∈ E is observed. An event A is
said to have occurred during this trial if ξ is an element of A, ξ ∈ A. For example, if
the measurement of the temperature of the reactor was ξ = 285, then the event A =
[270, 290] = ‘the measured temperature is in the interval [270, 290] K ’ occurred, but the
event B = {100} = ‘the measured temperature is 100 K ’ did not occur.

The probabilities of events are of interest (see Section 1.4). For example, Pr([270, 290])
is the probability that, in a single trial, the value of the temperature is between 270 and
290.

1.3 Joint Events

Often of interest are events that are combinations of other events. For example, an
engineer may want to know the probability that the temperature of a polymerization
reactor is within its normal operating range, such as the probability that the reactor
temperature is greater than 300 K and less than 400 K. In this case, there are two events,
A = (300,+∞) and B = [0, 400), and of interest is the probability that both events occur
in single trial. This probability is denoted by Pr(A and B), where (A and B) is the event
(300,+∞) ∩ [0, 400) = (300, 400). This operation is also called the intersection of A and
B.

Though not the case in this example, in general it is possible for the event (A and B)
to be the empty set. This happens if there are no outcomes that are in both events A
and B, in which case A and B are said to be mutually exclusive events.
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Another type of joint event is (A or B), which occurs if A occurs, B occurs, or both
occur. In the example above, (A or B) = (300,+∞)∪ [0, 400) = [0,+∞) = E. Of course,
it is not always the case that (A or B) = E.

The operation (A or B) is also called the union of A and B.

1.4 Probabilities

The standard physical interpretation of the probability of an event is: if the reactor
temperature is measured N times and the number of times the temperature is observed
to fall between 270 and 290 is N[270,290], then

N[270,290]
Pr([270, 290]) = lim

N→∞
.

N

The probability obeys the three basic rules:

1. For any event A, the probability of event A satisfies Pr(A) ≥ 0.

2. The probability of the event consisting of all possible outcomes is one, Pr(E) = 1.

3. If the events A and B are mutually exclusive, then Pr(A or B) = Pr(A) + Pr(B).

Every other result in probability theory, intuitive or otherwise, can be derived from these
three rules without any further assumptions. One fundamental result that follows from
these properties is: For any events A and B,

Pr(A or B) = Pr(A) + Pr(B)− Pr(A and B).

1.5 Conditional Probabilities

For two events A and B, the conditional probability of A given B is the probability that
the event A will occur, given that event B is known to occur or to have occurred. This
conditional probability is related to the intersection of the two sets by

Pr(B and A)
Pr(A|B) ≡ .

Pr(B)

As an example, suppose that event A is ‘the measured temperature is 300 ’ and event B
is ‘the measured temperature is less than 400.’ Then Pr(A|B) is the probability that the
temperature is 300, given that the temperature is less than 400, which could be computed
from the probability of the intersection of A and B and the probability of B (if known).
Sometimes the conditional probability can be computed without knowing the exact value
of the probabilities of either event A or B. For example, Pr(B|A) is the probability that
the temperature is less than 400, given that the temperature is 300, which is equal to 1
as seen by applying the above formula:

Pr(A and B) = Pr({300} ∩ [0, 400]) = Pr({300}) = Pr(A).

Then

Pr(A and B)
Pr(B|A) =

Pr(A)
=

Pr(A)
= 1.

Pr(A)

This conditional probability was computable without knowing the value of the probability
of event A.
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Rearranging the expression for the conditional probability gives that

Pr(B and A) = Pr(B)Pr(A|B).

The events A and B are said to be independent if

Pr(B and A) = Pr(B)Pr(A),

which implies that the events A and B are independent if and only if Pr(A|B) = Pr(A).
That is, the probability of the occurrence of event A is not affected by whether the event
B has occurred. This result is consistent with our intuition as to the meaning of two
events being independent.

1.6 The Total Probability Theorem

Suppose that A1, . . . , An are mutually exclusive events. n events are mutually exclusive
if at most one of them can occur in a single trial. Suppose further that these events are
exhaustive, which means that together they account for every possible outcome. In other
words, for any trial ξ ∈ E, ξ ∈ Ak for at least one k because the Ai are exhaustive, and
ξ ∈/ Aj for all j 6= k because the Ai are mutually exclusive.

For such a set of events, the Total Probability Theorem states that: For any event B,

Pr(B) = Pr(B|A1)Pr(A1) + Pr(B|A2)Pr(A2) + · · ·+ Pr(B|An)Pr(An).

1.7 Bayes’ Theorem

For two events Ai and B, taking the intersection of two sets is independent of the order
of the two sets,

Pr(Ai and B) = Pr(B and Ai).

Applying the expression for conditional probability to both sides of this equation results
in

Pr(A )
Pr(Ai|B) = Pr(B| i

Ai) . (1)
Pr(B)

Now suppose that event Ai is a member of a collection of events, A1, . . . , An, which is
mutually exclusive and exhaustive. The Total Probability Theorem indicates that

Pr(B) = Pr(B|A1)Pr(A1) + Pr(B|A2)Pr(A2) + · · ·+ Pr(B|An)Pr(An).

Substituting this equation into the denominator of (1) gives Bayes’ Theorem:

Pr(B
Pr(Ai|B) =

|Ai)Pr(Ai)
.

Pr(B|A1)Pr(A1) + Pr(B|A2)Pr(A2) + · · ·+ Pr(B|An)Pr(An)

Bayes’ theorem provides a very useful framework for using experimental measurements
to update knowledge about a physical problem, which is often applied in the design of
prognostic/diagnostic systems and in the estimation of states or model parameters from
experimental data.
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2 Random Variables

In the example of measuring the temperature of a reactor T , the measured temperature
is an example of a random variable. Formally, a random variable is any function of the
outcome of an experiment, g : E → R. Since the measured temperature T was the outcome
of the experiment, it is the simplest example of a random variable; T (ξ) = ξ. As another
example, the value of a rate constant calculated from the temperature measurement,

E
k(ξ) = A exp

(
− ,
Rξ

)
is also a random variable.

In general, let x denote a random variable on a set of outcomes E. Performing a single
trial produces an outcome ξ ∈ E that is a realization or sample of the random variable x,
x(ξ) = x̂ ∈ R. Since the value of a random variable depends on the outcome of a trial, the
events can be defined in terms of random variables. For example, the subset of E defined
by {ξ : x(ξ) ≥ 5} is an event, which is interpreted as ‘the outcome of the trial ξ satisfies
x(ξ) ≥ 5’. For the above example of the rate constant, this event would be interpreted
as ‘the measured temperature predicts a rate constant greater than 5 ’. These events also
have probabilities, which are denoted by

Pr(x ≥ 5) = Pr({ξ : x(ξ) ≥ 5}).

2.1 Cumulative Probability and Probability Density

The cumulative probability function1 Fx of a random variable is defined as

Fx(x̂) = Pr(−∞ ≤ x ≤ x̂).

Given some x̂, this function returns the probability that the random variable x will take
a value less than x̂ in a single trial. Fx is a nondecreasing function with Fx(−∞) = 0 and
Fx(+∞) = 1.

The probability density function (PDF) of the random variable x is a function px de-
fined by: For every x̂ ∈ R, the probability that, in a given trial, x(ξ) is in the infinitesimal
interval [x,ˆ x̂+ dx] is

Pr([x,ˆ x̂+ dx]) = px(x̂)dx.

Figure 1 shows a probability density function for x.
If x can only take discrete values, such as integer values, then for any such value

x̂, px(x̂) is simply the probability that the result of a single experiment will be x̂. In
general a random variable can take on a continuum of values, such as the measurement
of temperature T in the above example. In such cases, it is incorrect to call px(x̂) the
probability of observing the value x̂. Instead, px(x̂) is called the probability density of x̂.

The PDF px satisfies ∫ +∞
px(x′)dx′ = 1,

−∞

and is related to the cumulative probability function by

x̂

Fx(x̂) =

∫
px(x′)dx′.

−∞

1Also known as the cumulative distribution function or cumulative distribution function.
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Figure 1: Probability density function for x.

Furthermore,

x2

Pr(x1 ≤ x ≤ x2) =

∫
px(x′)dx′.

x1

2.2 Working with Random Variables

Strictly speaking, the PDF px of a random variable x is defined in terms of the probabilities
of events in the underlying set of outcomes E. Because the PDF specifies the behavior of
x completely, it is common in applications to refer to a random variable with a specified
PDF, without defining or otherwise referring to the underlying set of outcomes E.

In this context, it is common to say that to sample the PDF px is to get a value x̂ ∈ R,
which is shorthand for the more formal description: a trial is performed to get an outcome
ξ ∈ E and define x̂ = x(ξ). Sampling a PDF px means to generate in some way numbers
x̂ preferentially in regions where px is large. That is, for a large number N of samples,
the number of samples lying in a given interval [x1, x2], N[x1,x2], should obey

N[x1,x2]
x

∫ x2

≈ Pr(x1 ≤ ˆ ≤ x2) = px(x′)dx′.
N x1

2.3 Mean and Variance

Let f be a function of the random variable x. The expected value of f is defined as

+∞
〈f〉 =

∫
f(x′)px(x′)dx′.

−∞

The expected value of x, which is known as the mean of x, is

〈x〉 =

∫ +∞
x′px(x′)dx′.

−∞
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The variance of x, σ2
x, is defined as the expected value of (x− 〈x〉)2,

σ2
x = 〈∫(x+− 〈x〉)2〉,

σ2
∞

x = (x′ − 〈x〉)2px(x′)dx′,∫−∞+
σ2

∞ ∞

x = (x′)2px(x′)dx′ − 2〈x〉
∫ +∞ +

x′p 2
x(x′)dx′ + 〈x〉

−∞ −∞

∫
px(x′)dx′,

−∞

σ2
x =
2

〈x2〉 − 2〈x〉〈x〉+ 〈x〉2,
σx = 〈x2〉 − 〈x〉2.

The variance is a measure of the deviation of samples of the PDF px from the mean 〈x〉.
The variance of f is

σ2
f = 〈(f(x)− 〈f〉)2〉,

=

∫ +∞
(f(x′)− 〈f〉)2px(x′)dx′,

−∞

= 〈f2〉 − 〈f〉2.

The standard deviations of x and f are σx =
√
σ2
x and σf =

√
σ2
f .

2.4 Notable PDFs

The normal or Gaussian PDF is

1
px(x̂) =

σ
√

2

e−(x̂−η) /2σ2

.
2π

The mean and standard deviation of a random variable x with this PDF are 〈x〉 = η and
σx = σ.

The uniform PDF on an interval [a, b] ⊂ R is

1

px(x̂) =

{
if x̂ ]

− a
∈ [a, b

b
0 otherwise

A random variable x with this PDF has zero probability of being observed outside of the
interval [a, b], and the probability of being observed in any infinitesimal interval [x,ˆ x̂+dx]
is equal for all x̂ ∈ [a, b). The mean and standard deviation of the uniform distribution
are b+a

2 and 1
3 ( b−a )2.2

3 Random Vectors

A random vector is a vector of random variables

x = (x1, . . . , xn),

which some references write as a row and some as a column. In the most natural case, ran-
dom vectors arise from experiments where the outcomes are vector-valued. For example,
the experiment may be to measure the velocity of a particle, which has three components
v = (vx, vy, vz).
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3.1 Joint Cumulative Probability and Probability Density

The joint cumulative probability function of a random vector x is defined as

Fx(x̂) = Pr(x1 ≤ x̂1 and x2 ≤ x̂2 and · · · and xn ≤ x̂n),

where x̂ = (x̂1, . . . , x̂n).
Similarly, the joint PDF of the random vector x is a function px defined by: The

probability that, in a given trial, x(ξ) is in the infinitesimal interval

[x̂, x̂ + dx] ≡ [x̂1, x̂1 + dx1]× · · · × [x̂n, x̂n + dxn]

is

Pr([x̂, x̂ + dx]) = px(x̂)dx.

The PDF px(x) satisfies∫ +∞
px(x′)dx′ =

∫ +∞
· · ·
∫

px(x′1, · · · , xn′ )dx′1 dx
Rn

· · · ′
n = 1,

−∞ −∞

and is related to the joint cumulative probability function by∫ x̂1
∫ x̂n

Fx(x̂) = · · · px(x′1, · · · , x′n)dx′1 · · · dx′n.
−∞ −∞

Furthermore, for any region Ω ⊂ Rn,

Pr(x ∈ Ω) =

∫
px(x′)dx′.

Ω

The (scalar) random variables x1, . . . , xn are said to be independent if

px(x̂) = px1
(x̂1)px2

(x̂2) · · · pxn
(x̂n).

3.2 Mean, Correlation and Covariance

The mean of a random vector x is the v th

〈xi〉 =

∫ector with i component

x′ipx(x′)dx′.
Rn

This vector is denoted compactly as

〈x〉 =

∫
x′px(x′)dx′.

Rn

The covariance of the two (scalar) random variables xi and xj is

Cij = 〈(xi − 〈xi〉)(xj − 〈xj〉)〉,
= 〈xixj〉 − 〈xi〉〈xj〉.

The variance of xi is σ2
xi

= Cii. The covariance matrix of the random vector x is
C11

.
· · · C

C =
 1n . .. . .. . .


.

Cn1 · · · Cnn


The random vector x is uncorrelated if C is diagonal. If the


elements of x are independent,

then x is uncorrelated.
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3.3 Sample Averages and The Central Limit Theorem

Suppose that x is a scalar random variable with PDF px and f is a function of x. The
sample average of f with N samples is

SN
1

f =
N

∑N
f(xi),

i=1

where x1, . . . , xN are N samples from px (equivalently, values of the random variable x
in N trials, xi = x(ξi)).

The sample average is a function of N samples from px. An equivalent interpretation
is that the sample average is a function of N independent random variables, all of which
have the same PDF px. That is, SNf is a function of a random vector x = (x1, . . . , xn)
with

px(x̂) = px1(x̂1)px2(x̂2) · · · pxN
(x̂N ),

px(x̂) = px(x̂1)px(x̂2) · · · px(x̂N ).

From this interpretation of SNf , its mean and variance are defined as

+

〈SNf 〉 =

∫ ∞
· · ·
∫ +∞

SNf (x1, · · · , xN )px(x1) · · · px(xN )dx1 · · · dxN ,∫−∞ −∞
+∞ ∫ +∞

σ2
N = · · ·

( 2
SN , x N
f (x1, · · · N )Sf

− 〈Sf 〉
)
px(x1) · · · px(xN )dx1 · · · dxN ,

−∞ −∞

σ2
SN =
f

〈(SNf )2〉 − 〈SNf 〉2.

It can be shown that

〈SNf 〉 = 〈f〉,
2 1
σSN =

f
σ2

N f .

In words, the sample average of f based on N samples is itself a random variable, with
mean being the same as the mean of f , and variance being 1/N the variance of f . The
Central Limit Theorem states that the distribution of SNf approaches the normal distri-
bution, regardless of the PDF of x, as N approaches infinity.

4 Random Number Generators

Almost all programming environments, including MATLAB, have built-in random number
generators for computations with random variables. These subroutines generate samples
of a specified PDF. MATLAB has a random number generator rand that samples the
uniform PDF on the open interval (0, 1) and a random number generator randn that
samples the normal PDF with mean 0 and standard deviation 1. It is possible to modify
the output of these subroutines to produce samples of a random variable with any desired
PDF px through a variety of methods.

Algorithms for generating random numbers are not studied in this course, but we do
make two notes:
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1. The generated numbers are not actually random, but are designed to appear random
in certain respects, which make them useful for certain applications. If simulations
involving random numbers become important to your thesis/job, you should study
the available methods and make sure that you are using a random number generator
that is appropriate for your application.

2. Generating good random numbers is computationally expensive. When writing
computer programs whose main cost involves calls to a random number generator,
which occurs in Monte Carlo methods described later in this class, one goal is
to design the algorithm to avoid performing any unnecessary calls to the random
number generator.
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