10.37 Spring 2007

Problem Set 2 due Wednesday, Feb. 21.

Problem 1. The microorganism *Mycobacterium vaccae* is able to grow with ethane as the sole source of carbon and energy and NH_3 as the nitrogen source. The limiting substrate is ethane, and $Y_{sx} = 22.8$ gram dry weight per mole of ethane. { $Y_{sx} =$ Yield of biomass (x) from ethane (s = substrate)}.

- a. Except for small amounts of S and P, an analysis of dry cell mass is C, 47.60 wt%; N, 7.30 wt%; H, 7.33 wt%; ash, 3.00 wt%. The remainder is taken to be oxygen, which can not be detected in the analysis. Determine the elemental composition for the ashfree biomass, CH_aO_bN_c, and the formula weight per C-atom. Also determine Y_{sx}, in the units of C-moles of biomass per C-mole of ethane.
- b. Calculate the oxygen consumption Y_{xo} (moles of O_2 per C-mole of biomass) when it is assumed that CO_2 , H_2O and $CH_aO_bN_c$ are the only metabolic products. Write the full stoichiometric equation for the growth process, and determine the heat evolved per kilogram dry weight. Assume $\Delta H_{ethane} = 1560 \text{ kJ/mol}, \Delta H_{NH3} = 383 \text{ kJ/mol}, \Delta H_{biomass}$ = 19 kJ/gram dry weight.

Problem 2. The gas phase homogeneous oxidation reaction

$$2 \text{ NO} + \text{O}_2 \rightarrow 2 \text{ NO}_2$$

is known to have a third-order rate law:

$$r_{\rm NO} = -2k[\rm NO]^2[O_2]$$

- at least under atmospheric conditions. However, the rate constant decreases as T increases, contrary to what happens in all direct elementary step termolecular reactions. So this reaction must actually go through more than one elementary step. Provide a mechanism that explains this strange behavior, that includes an NO3 species as an intermediate. Under what conditions would you expect r_{NO} to deviate significantly from the normal third-order expression above? What is the PSSH rate law for the reverse reaction?
- **Problem 3.** The Michaelis-Menton reaction mechanism usually assumed for enzymatic reactions is:

$$S + E = E - S \qquad (1)$$
$$E - S \rightarrow P + E \qquad (2)$$

- a. Consider a well-mixed batch reactor with initial enzyme concentration [E]₀ and initial substrate concentration [S]₀. Write expressions for the rate of change of concentration of [S], [ES], [E], and [P] in terms of k₁, k₂, and K_{eq,1}, and concentration variables.
- b. Write a Matlab function that solves this set of differential equations for the concentration of all species in time given inputs k₁, k₂, K_{eq,1}, [E]₀, [S]₀.
- c. The pseudo-steady approximation may be applied on the reactive intermediate species [ES]. This approximation is: $\frac{d[ES]}{dt} \approx 0$. Using this pseudo-steady approximation, verify that the rate of change of [S] is given by the expression: $\frac{d[S]}{dt} = -\frac{v_{max}[S]}{K_M + [S]}$. What are v_{max} and K_M in terms of the other constants in this problem: $k_1, k_2, K_{eq,1}, [E]_0, [S]_0$?
- d. What does the rate $\frac{d[S]}{dt}$ simplify to in the limit $[S] \gg K_M$? What about the limit $K_M \gg [S]$?
- e. Consider the following conditions: k₁=10⁹ liter/mole-s, k₂=1 s⁻¹, K_{eq,1}= 1 liter/mole, [E]₀=10⁻⁶ M, [S]₀=0.01 M. Find analytical solutions for [S](t), [ES](t),

and [P](t). *Hint: determine what* $\frac{d[S]}{dt}$ *regime these conditions lie within.*

Compare the analytical solution with the full numerical solution by plotting them together: plot [S](t), [ES](t) and [P](t) for both the numerical and analytical solutions (three plots). Use a solid line for the analytical solutions and open symbols for the numerical solutions. Run the simulation at least until the conversion $X_P = [P]/[S]_0 \ge 99\%$. After approximately how much time does the pseudo-steady approximation become valid? *Hint: look at the short-time behavior of* [ES](t) *in your numerical solution to find the answer*.