10.542 – Biochemical Engineering

Spring 2005

<u>Practice Problems for Quiz #2 – Structured Models, Continuous Culture</u> *These problems do not need to be turned in.*

1) Consider a structured model that assumes the cell is comprised of four components:

P, the concentration of intracellular precursors M₁, the concentration of enzymes and RNA involved in cell synthesis M₂, the concentration of structural macromolecules G, storage polymers

The total biomass is thus equal to the sum of the four components: $X_T = P + M_1 + M_2 + G$, where all concentrations are in g/L of reactor volume.

Develop expressions for dG/dt, dM_1/dt , dM_2/dt , and dP/dt by assuming the following:

(i) Growth of the cell is limited by the concentration of glucose, S.

(ii) dG/dt is equal to the rate of G formation minus the rate of G degradation. The rate of G formation per unit reactor volume obeys Michaelis-Menten kinetics in the precursor concentration per cell mass and the concentration of M_1 per unit reactor volume. The rate of G degradation is first-order in G.

(iii) dM_2/dt obeys Michaelis-Menten kinetics in the precursor concentration per cell mass and the concentration of M_1 per unit reactor volume.

(iv) dM_1/dt is first order in both M_1 and M_2 ; the second-order rate constant exhibits Michaelis-Menten dependence on the precursor concentration per cell mass.

(v) dP/dt is proportional to the rate of S uptake per cell mass minus the time derivatives of M_1 , M_2 , and G.

Use the following notation: $k_1 = g G/g M_1$ -hr $k_2 = g M_2/g M_1$ -hr $v_s = g S$ transported/g XT-hr

 γ_i = stoichiometric coefficients

 k_{1D} (degradation) = 1/hr $k_3 = g M_1/g M_2$ -g M₁-hr K_i = saturation parameters (Michaelis constants)

- 2) Shuler & Kargi, Problem 6.13
- 3) Shuler & Kargi, Problem 6.15
- 4) Shuler & Kargi, Problem 6.18