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2.0 context and direction 
Imagine a system that varies in time; we might plot its output vs. time.  A 
plot might imply an equation, and the equation is usually an ODE 
(ordinary differential equation).  Therefore, we will review the math of the 
first-order ODE while emphasizing how it can represent a dynamic 
system.  We examine how the system is affected by its initial condition 
and by disturbances, where the disturbances may be non-smooth, multiple, 
or delayed. 
 
2.1 first-order, linear, variable-coefficient ODE 
The dependent variable y(t) depends on its first derivative and forcing 
function x(t).  When the independent variable t is t0, y is y0. 
 

 00 y)t(y)t(Kx)t(y
dt
dy)t(a ==+  (2.1-1) 

 
In writing (2.1-1) we have arranged a coefficient of +1 for y.   Therefore 
a(t) must have dimensions of independent variable t, and K has 
dimensions of y/x.  We solve (2.1-1) by defining the integrating factor p(t) 
 

∫=
)(

exp)(
ta

dttp  (2.1-2) 

 
Notice that p(t) is dimensionless, as is the quotient under the integral.  The 
solution  
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comprises contributions from the initial condition y(t0) and the forcing 
function Kx(t).  These are known as the homogeneous (as if the right-hand 
side were zero) and particular (depends on the right-hand side) solutions.  
In the language of dynamic systems, we can think of y(t) as the response 
of the system to input disturbances Kx(t) and y(t0). 
 
2.2 first-order ODE, special case for process control applications 
The independent variable t will represent time.  For many process control 
applications, a(t) in (2.1-1) will be a positive constant; we call it the time 
constant τ.   
 

00 y)t(y)t(Kx)t(y
dt
dy

==+τ  (2.2-1) 

 
The integrating factor (2.1-2) is 
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and the solution (2.1-3) becomes 
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The initial condition affects the system response from the beginning, but 
its effect decays to zero according to the magnitude of the time constant - 
larger time constants represent slower decay.  If not further disturbed by 
some x(t), the first order system reaches equilibrium at zero. 
 
However, most practical systems are disturbed.  K is a property of the 
system, called the gain.  By its magnitude and sign, the gain influences 
how strongly y responds to x.  The form of the response depends on the 
nature of the disturbance.   
 
Example: suppose x is a unit step function at time t1.  Before we proceed 
formally, let us think intuitively.  From (2.2-3) we expect the response y to 
decay toward zero from IC y0.  At time t1, the system will respond to being 
hit with a step disturbance.  After a long time, there will be no memory of 
the initial condition, and the system will respond only to the disturbance 
input.  Because this is constant after the step, we guess that the response 
will also become constant. 
 
Now the math: from (2.2-3) 
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Figure 2.2-1 shows the solution.  Notice that the particular solution makes 
no contribution before time t1.  The initial condition decays, and with no 
disturbance would continue to zero.  At t1, however, the system responds 
to the step disturbance, approaching constant value K as time becomes 
large.  This immediate response, followed by asymptotic approach to the 
new steady state, is characteristic of first-order systems.  Because the 
response does not track the step input faithfully, the response is said to lag 
behind the input; the first-order system is sometimes called a first-order 
lag. 
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Figure 2.2-1  first-order response to initial condition and step 

disturbance 
 

2.3 piecewise integration of non-smooth disturbances 
The solution (2.2-3) is applied over succeeding time intervals, each 
featuring an initial condition (from the preceding interval) and disturbance 
input. 
 

( )

( )

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

<<
τ

+

<<
τ

+

= ∫

∫

ττ
−

τ
−−

ττ
−

τ
−−

.etc

tttdt)t(xeeKe)t(y

tttdt)t(xeeKe)t(y

)t(y 21

t

t

tttt

1

10

t

t

tttt

0

1

1

0

0

 (2.3-1) 

 
Example: suppose 
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In this problem, variables t, x, and y should be presumed to have 
appropriate, if unstated, units; in these units, both gain and time constant 
are of magnitude 1.  From (2.3-1),  
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With a zero initial condition and no disturbance, the system remains at 
equilibrium until the ramp disturbance begins at t = 1.  Then the output 
immediately rises in response, lagging behind the linear ramp.  At t = 2, 
the disturbance ceases, and the output decays back toward equilibrium. 
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2.4 multiple disturbances and superimposition 
Systems can have more than one input.  Consider a first-order system with 
two disturbance functions. 
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=+=+τ  (2.4-1) 

 
Applying (2.2-3) and distributing the integral across the disturbances, we 
find that the effects of the disturbances on y are additive. 
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This additive behavior is a happy characteristic of linear systems.  Thus 
another way to view problem (2.4-1) is to decompose it into component 
problems.  That is, define 
 

21H yyyy ++=  (2.4-3) 
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and write (2.4-1) in three equations.  We put the initial condition with no 
disturbances, and each disturbance with a zero initial condition. 
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Equations and initial conditions (2.4-4) can be summed to recover the 
original problem specification (2.4-1).  The solutions are 
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and of course these solutions can be added to recover original solution 
(2.4-2).  Thus we can view the problem of multiple disturbances as a 
system responding to the sum of the disturbances, or as the sum of 
responses from several identical systems, each responding to a single 
disturbance. 
 
Example: consider 
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We first place the equation in standard form, in which the coefficient of y 
is +1.   
 

2)0(y)3t(U4)1t(U3y
dt
dy

=−−−=+  (2.4-7) 

 
Equation (2.4-7) shows us that the time constant is 1, and that the system 
responds to the first disturbance with a gain of 3, and to the second with a 
gain of -4.  The solution is 
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In Figure 2.4-1, the individual solution components are plotted as solid 
traces; their sum, which is the system response, is a dashed trace.  Notice 
how the first-order lag responds to each new disturbance as it occurs. 
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Figure 2.4-1  first-order response to multiple disturbances 

 
Writing the step functions explicitly in solution (2.4-8) emphasizes that 
particular disturbances do not influence the solution until the time of their 
occurrence.  For example, if they were omitted, some deceptively correct 
but inappropriate rearrangement would lead to errors. 
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This notation at least implies that two of the exponential functions have 
delayed onsets.  However, further correct-but-inappropriate rearrangement 
makes things even worse. 
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The incorrect solutions are plotted with (2.4-8) in Figure 2.4-2.  Equation 
(2.4-9) has become discontinuous - the response takes non-physical leaps 
at the onset of each new disturbance.  Equation (2.4-10) has lost all 
dependence on the disturbances and decays from a non-physical initial 
condition.  Even with the mistakes, both incorrect solutions lead to the 
correct long-term condition. 
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Figure 2.4-2  comparison of correct and incorrect solutions 
 
2.5 delayed response to disturbances 
Consider a system that reacts to a disturbance, but only after some 
intervening time interval θ has passed.  That is 
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Equation (2.5-1) shows the dependence of y, at any time t, on the value of 
x at earlier time t - θ.  The solution is written directly from (2.2-3). 
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We must integrate the disturbance considering the time delay.  Take as an 
example a disturbance x(t) occurring at time t1.  The plot shows the 
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disturbance, as well as the disturbance as the system experiences it, which 
begins at time t1 + θ.  We could express this disturbance-as-experienced as 
some new function x1(t), occurring at time t1 + θ.   
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Alternatively, we could define a new time variable 
 

θ−=ξ t  (2.5-3) 
 
and write the input as x(ξ).  The integral in (2.5-2) becomes, then, 
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Therefore, solution (2.5-2) becomes 
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Example: consider a step disturbance at time t = 2 that affects the system 
3 time units later. 
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Using (2.5-5) 
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Figure 2.5-1 shows that a typical first-order lag step response occurs 3 
time units after being disturbed at t = 2.   
 

0

0.5

1

0 2 4 6 8 1

di
st

ur
ba

nc
es

0

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 1

time

re
sp

on
se

0

0

0.5

1

0 2 4 6 8 1

di
st

ur
ba

nc
es

0

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 1

time

re
sp

on
se

0

 
Figure 2.5-1  step response of first order system with dead time 

 
The time delay in responding to a disturbance is often called dead time.  
Dead time is different from lag.  Lag occurs because of the combination of 
y and its derivative on the left-hand side of the equation.  Dead time 

revised 2005 Jan 11  10 



Spring 2006 Process Dynamics, Operations, and Control  10.450 
 Lesson 2: Mathematics Review 
occurs because of a time delay in processing a disturbance on the right-
hand side. 
 
2.6 conclusion 
Please become comfortable with handling ODEs.  View them as systems; 
identify their inputs and outputs, their gains and time parameters. 
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