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 Lesson 4: Two Tanks in Series 
4.0 context and direction 
In Lesson 3 we performed a material balance on a mixing tank and derived 
a first-order system model.  We used that model to predict the open-loop 
process behavior and its closed-loop behavior, under feedback control.  In 
this lesson, we complicate the process, and find that some additional 
analysis tools will be useful.   
 

DYNAMIC SYSTEM BEHAVIOR 
 
4.1 math model of continuous blending tanks 
We consider two tanks in series with single inlet and outlet streams.   
 

F, CAi F, CA1

volume V1

volume V2

F, CA2

F, CAi F, CA1

volume V1

volume V2

F, CA2

 
 
Our component A mass balance is written over each tank. 
 

 

2A1A2A2

1AAi1A1
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d

FCFCCV
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−=

−=
 (4.1-1) 

 
As in Lesson 3, we have recognized that each tank operates in overflow: 
the volume is constant, so that changes in the inlet flow are quickly 
duplicated in the outlet flow.  Hence all streams are written in terms of a 
single volumetric flow F.  Again, we will regard the flow as constant in 
time.  Also, each tank is well mixed. 
 
Putting (4.1-1) into standard form 
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we identify two first-order dynamic systems coupled through the 
composition of the intermediate stream, CA1.  If we view the tanks as 
separate systems, we see that CA1 is the response variable of the first tank 
and the input to the second.  If instead we view the pair of tanks as a single 
system, CA1 becomes an intermediate variable.  The speed of response 
depends on two time constants, which (as before) are equal to the ratio of 
volume for each tank and the common volumetric flow.     
 
We write (4.1-2) at a steady reference condition to find 
 

  (4.1-3) r,2Ar,1Ar,Air,A CCCC ===
 
We subtract the reference condition from (4.1-2) and thus express the 
variables in deviation form.   
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 (4.1-4) 

 
4.2 solving the coupled equations - a second-order system 
As usual, we will take the initial condition to be zero (response variables 
at their reference conditions).  We may solve (4.1-4) in two ways: 
 
Because the first equation contains only C′

A1, we may integrate it directly 
to find C′

A1 as a function of the input C′
Ai.  This solution becomes the 

forcing function in the second equation, which may be integrated directly 
to find C′

A2.  That is 
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On defining a specific disturbance C′

Ai we can integrate (4.2-2) to a 
solution. 
 
Alternatively, we may eliminate the intermediate variable C′

A1 between 
the equations (4.1-4) and obtain a second-order equation for C′

A2 as a 
function of C′

Ai.  The steps are  
 

(1) differentiate the second equation  
(2) solve the first equation for the derivative of C′

A1  
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(3) solve the original second equation for C′
A1  

(4) substitute in the equation of the first step.   
 
The result is 
 

( ) '
Ai

'
2A

'
2A

212

'
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2

21 CC
dt

dC
dt
Cd

=+τ+τ+ττ  (4.2-3) 

 
Two mass storage elements led to two first-order equations, which have 
combined to produce a single second-order equation.  A homogeneous 
solution to (4.2-3) can be found directly, but the particular solution 
depends on the nature of the disturbance: 
 

( )'
Ai

'
part,2A

t

2

t

1
'

2A CCeAeAC 21 ++= τ
−

τ
−

 (4.2-4) 
 
where the constants A1 and A2 are found by invoking initial conditions 
after the particular solution is determined. 
 
4.3 response of system to step disturbance 
Suppose a step change ΔC occurs in the inlet concentration at time td.  
Either (4.2-2) or (4.2-4) yields 
 

( )
d d

1

(t t ) ( t t )
' 1 2
A2 d

1 2 1 2

C U t t C 1 e e
− − − −

τ⎡ ⎤τ τ
= − Δ − +⎢ τ − τ τ − τ⎣ ⎦

2τ ⎥  (4.3-1) 

 
Each tank contributes a first-order response based on its own time 
constant.  However, these responses are weighted by factors that depend 
on both time constants.   
 
The result in Figure 4.3-1 looks somewhat different from the first-order 
responses we have seen.  We have plotted the step response of a second-
order system with τ1 = 1 and τ1 = 1.5 in arbitrary units.  At sufficiently 
long time, the initial condition has no influence and the outlet 
concentration will become equal to the new inlet concentration; in this 
respect it looks like the first-order system response.  However, the initial 
behavior differs: the outlet concentration rises gradually instead of 
abruptly.  This S-shaped curve, often called “sigmoid”, is a feature of 
systems of order greater than one.  Physically, we can understand this by 
realizing that the change in inlet concentration must spread through two 
tanks, and it reaches the second tank only after being diluted in the first.   
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Figure 4.3-1: Response to step change in inlet composition 

 
4.4 introducing the Laplace transform 
We bother with the Laplace transform for two reasons:  
• after the initial learning pains, it actually makes the math easier, so we 

will use it in derivations  
• some of the terminology in linear systems and process control is based 

on formulating the equations with Laplace transforms. 
 
Definition: the Laplace transform turns a function of time y(t) into a 
function of the complex variable s.  Variable s has dimensions of 
reciprocal time.  All the information contained in the time-domain 
function is preserved in the Laplace domain. 
 

{ } ∫
∞

−==
0

stdte)t(y)t(yL)s(y  (4.4-1) 

 
(In these notes, we use the notation y(s) merely to indicate that y(t) has 
been transformed; we do not mean that y(s) has the same functional 
dependence on s that it does on t.) 
 
Functional transforms: textbooks (for example, Marlin, Sec. 4.2) usually 
include tables of transform pairs, so these derivations from definition 
(4.4-1) are primarily to demonstrate how the tables came to be. 
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Operational transforms: this allows us to transform entire equations, not 
just particular functions. 
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Inverting transforms: use the tables to invert simple Laplace-domain 
functions to their time-domain equivalents.  To simplify the polynomial 
functions often found in control engineering we may use partial fraction 
expansion.  The complicated ratio in (4.4-6) can be inverted if is expanded 
into a series of simpler fractions.   
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++
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+
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=
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= −  (4.4-6) 

 
In (4.4-6), α1 and α2 are repeated roots of the denominator.  The inverse 
transform of each term will involve an exponential function of the root αi.   
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 (4.4-7) 

 
Variety in the values of the coefficients Ci comes from the numerator 
function N(s). 
 
how to write the expansion 
Arrange the denominator so that the coefficient of each s is 1.  If there are 
no repeated roots, each root appears in one term. 
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 (4.4-8) 

 
If a root is repeated, it requires a term for each repetition. 
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 (4.4-9) 

 
Some roots may appear as complex conjugate pairs, so that, for example  
 

jba
jba

2

1

−=α
+=α

 (4.4-10) 

 
where j is the square root of -1. 
 
how to solve for the coefficients - it’s only algebra 
1) For each of the real, distinct roots, multiply the expansion by each RH 

denominator and substitute the value of the root for s to isolate the 
coefficient.  This also works for the highest power of a repeated root. 

2) With some coefficients determined, it may be easiest to substitute 
arbitrary values for s to get equations in the unknown coefficients. 
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3) For repeated roots, either 

(3a) multiply the expansion by s and take the limit as s → ∞.  
However, this will not isolate coefficients associated with 
repeated complex roots. 

(3b) multiply the expansion by the RH denominator of highest power.  
Differentiate this equation with respect to s, and substitute the 
value of the root for s.  Continue differentiating in this manner to 
isolate successive coefficients. 

4) For complex roots, solving for one coefficient is enough.  The other 
coefficient will be the complex conjugate. 

 
4.5 solving linear ODEs with Laplace transforms 
We return to (4.1-4), the two equations that describe concentration in the 
tanks. 
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We perform the Laplace transform on the entire first equation.  It 
distributes across addition, and constant τ1 may be factored out. 
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We next perform an operational transform on the derivative.  Because the 
functional forms of the variables C′

A1 and C′
Ai are not yet known, we 

simply indicate a variable in the Laplace domain. 
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We can easily solve (4.5-2) for C′

A1.  If we similarly treat the second 
equation in (4.1-4), we arrive at the equivalent formulation in the Laplace 
domain.   
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Equations (4.5-3) are not solutions - we have not solved anything!  We 
merely have a new formulation of problem (4.1-4), a formulation that is 
more abstract (what on earth is Laplace domain?) and yet simpler, by 
virtue of being algebraic.  It is important to remember that all the 
information held in the differential equations (4.1-4) is preserved in the 
Laplace domain formulation (4.5-3). 
 
We proceed toward solution by eliminating the intermediate variable in 
(4.5-3).  We find 
 

)s(C
1s

1
1s

1)s(C '
Ai

12

'
2A +τ+τ

=  (4.5-4) 

 
With (4.5-4) we have gone as far as we can without knowing more about 
the disturbance.  That is, we cannot invert the right-hand side of (4.5-4) 
until we can actually substitute a functional transform for the variable 
C′

Ai(s).  In this sense, (4.5-4) resembles (4.2-2) and (4.2-4): a solution 
needing more specification. 
 
As in Section 4.3, suppose a step change ΔC occurs in the inlet 
concentration at time td.   
 

( ) CttU)t(C d
'
Ai Δ−=  (4.5-5) 

 
We must take the Laplace transform, 
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which we may substitute into (4.5-4). 
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This IS the solution, the step response of the two tanks in series.  Of 
course, it really must be inverted to the time domain.  We treat the 
polynomial denominator from either the tables or partial fraction 
expansion: 
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Next we apply the time delay 
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Remembering the constant factor, we complete the inverse transform of 
(4.5-7). 
 

⎥
⎦

⎤
⎢
⎣

⎡
τ−τ

τ
+

τ−τ
τ

−Δ−= τ
−−

τ
−−

2
d

1
d )tt(

21

2
)tt(

21

1
d

'
2A ee1C)tt(UC  (4.5-10) 

 
which, of course, is identical to (4.3-1), derived in the time domain. 
 
4.6 describing systems with transfer functions 
In Section 4.1 we derived a system model to describe transient behavior in a tanks-in-series 
process.  Then in Section 4.5 we used Laplace transforms to solve it.  Let us now do the same 
procedure in the abstract.  Begin with the first-order lag, written in deviation variables: 
 

0)0(y)t(Kxy
dt
dy '''

'

==+τ  (4.6-1) 

 
After taking Laplace transforms, we relate input and output by an algebraic equation: 
 

)s(x
1s

K)s(y ''

+τ
=  (4.6-2) 

 
The ratio in (4.6-2) multiplies x′(s) (the transform of disturbance x′(t)) and in the process 
converts that signal into y′(s) (the transform of the response y′(t)).  We call this ratio the transfer 
function G(s).   
 

1s
K

)s(x
)s(y)s(G '

'

+τ
==  (4.6-3) 

 
G(s) contains all the information about the ODE (4.6-1).  We should from now recognize it, 
when we see it, as a first-order lag.  Should we want to know how the first-order lag behaves in 
response to some disturbance, we transform the disturbance, multiply it by the first-order lag 
transfer function, and then take the inverse transform of the result. 
 
Let us generalize (4.5-4), which described two first-order lags in series:   
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The transfer function for this second-order system is a product of two first-
order lags 
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We shall consider a transfer function to be a completely satisfactory 
description of a dynamic system.  We shall learn to notice its gain (long-
term steady-state relationship between y′ and x′), time constants, and poles 
(roots of the denominator). 
 

Table 4.6-1:  Characteristics of systems we have studied 
type equation transfer 

function 
poles steady 

state 
gain 

1st order lag 
)t(Kx)t(y

dt
dy ''

'

=+τ  1+s
K

τ
 -τ-1 K 

2nd order 
overdamped* ( ) )t(Kxy

dt
dy

dt
yd ''

'

212

'2

21 =+τ+τ+ττ  )1s)(1s(
K

21 +τ+τ
-τ1

-1

-τ2
-1 K 

*why “overdamped”?  There are other 2nd order forms to be encountered. 
 
4.7 describing systems with block diagrams  
The block diagram is a graphical display of the system in the Laplace domain.   
 

 
 

x′(s) 
G(s) 

y′(s)

It comprises blocks and arrows, and thus resembles many other types of flow diagram.  In our 
use with control systems, however, the arrows represent signals, variables that change in time, 
which are not necessarily actual flow streams.  The block contains the transfer function, which 
may be as simple as a units conversion between x and y, or a description of more complicated 
dynamic behavior.  Remember that the transfer function incorporates all the dynamic 
information in the system equations.  This diagram implies the Laplace domain relationship 
 

)s(x)s(G)s(y '' =  (4.7-1) 
 
The real value of block diagrams is to represent the flow of signals among multiple blocks. 
 
The Block Diagram Rules (see Marlin, Sec.4.4): 
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• exclusion: only one input and output to a block.  

systeminputs outputssysteminputs outputs

 
• summing: two signals may be summed at an explicit summing 

junction.  The algebraic sign is indicated at the junction (if omitted, 
is presumed to be positive). 
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• multiple assignment: a single signal may feed its value to multiple 

blocks.  This does NOT indicate that the signal is divided up 
among the blocks. 
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Block diagrams may be turned into equations by simple algebra.  It is usually most convenient to 
start with an output and work backwards by substitution.  In the summing diagram 
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In the multiple assignment diagram 
 

)s(x)s(G)s(G

)s(y)s(G)s(y

)s(x)s(G)s(G
)s(y)s(G)s(y

'
113

'
13

'
3

'
112

'
12

'
2

=

=

=

=

 (4.7-3) 

revised 2006 Mar 6  11 



Spring 2006 Process Dynamics, Operations, and Control  10.450 
 Lesson 4: Two Tanks in Series 
 
Similarly, equations may be turned into block diagrams.  System (4.7-2) has two inputs and thus 
requires at least 2 blocks. 
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System (4.7-3) has two outputs for one input.  Input x*

1 is not split – its full value is sent to each 
of two blocks. 
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This pair of block diagrams is equivalent to the pair from which they were derived. 
 
As a further illustration, we apply the block diagram rules to the two-tank 
system in (4.5-3): 
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4.8 frequency response from the transfer function 
In Section 3.5 we derived the system response to a sine input by 
integrating the differential equation.  We learned that the frequency 
response - that is, the long-term oscillation - could be characterized by its 
amplitude ratio and phase angle; these quantities were expressed on a 
Bode plot. 
 
Alternatively, we may derive the frequency response directly from the 
transfer function by substituting jω for s, where j is the square root of -1 
and ω is the radian frequency of the sine input.  For the second-order 
transfer function (4.6-5), 
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The function G(jω), although perhaps daunting to behold, is simply a 
complex number.  As such, it has real and imaginary parts, and a 
magnitude and a phase angle.  It turns out that the magnitude of G(jω) is 
the amplitude ratio of the frequency response.   
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 (4.8-2) 

 
Furthermore, the phase angle of G(jω) is the frequency response phase 
angle. 
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 (4.8-3) 

 
In Figure 4.8-1, the Bode plot abscissa has been normalized by the square 
root of the product of the time constants.  We see that the amplitude ratio 
of a second-order system declines more swiftly than that of a first-order 
system: the slope of the high-frequency asymptote is -2.  Unbalancing the 
time constants further decreases the amplitude ratio.  The phase angle can 
reach -180º.  It is symmetric about -90º. 
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Figure 4.8-1:  Bode plot for overdamped second order system 

 
4.9 stability of the two-tank system, and linear systems in general 
The step response (4.5-10) shows no terms that grow with time, so long as 
the time constants are positive.  Furthermore, the amplitude ratio in Figure 
4.8-1 is bounded.  Thus, a second-order overdamped system appears to be 
stable to bounded inputs.  In practical terms, a concentration disturbance at 
the inlet should not provoke a runaway response at the outlet. 
 
We have seen first- and second-order linear systems.  Let us generalize to 
arbitrary order: 
 

''
'

11n

'1n

1nn

'n

n xy
dt
dya

dt
yda

dt
yda =++++ −

−

−  (4.9-1) 

 
The function x′ represents all manner of bounded disturbances, expressed 
in deviation form.  The system properties, however, reside on the left-hand 
side of (4.9-1), and its stability behavior should be independent of the 
particular nature of the disturbances x′.  Hence, we may examine the 
homogeneous equation 
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−  (4.9-2) 

 
The solution to (4.9-2) is the sum of n terms, each containing a factor eαit, 
where αi is a real root, or the real part of a complex root, of the 
characteristic equation.   
 

01rarara 1
1n

1n
n

n =++++ −
−  (4.9-3) 

 
Hence if all the αi are negative, the solution cannot grow with time and 
will thus be stable.  If we take the Laplace transform of (4.9-1),  
 

1sasasa
1)s(G

)s(x
)s(y

1
1n

1n
n

n
'

'

++++
== −

−

 (4.9-4) 

 
we see that the denominator of the transfer function is identical to the 
characteristic equation.  Hence, the stability of the system is determined 
by the poles of the transfer function: poles with zero or positive real parts 
indicate a system unstable to bounded disturbances.  Table 4.6-1 shows 
that first-order lag and overdamped second-order systems are stable if 
their time constants are positive. 
 

CONTROL SCHEME 
 
4.10 step 1 - specify a control objective for the process 
Our control objective is to maintain the outlet composition CA2 at a 
constant value.   
 
4.11 step 2 - assign variables in the dynamic system 
The controlled variable is clearly CA2.  The inlet composition CAi is a 
disturbance variable.  The composition CA1 is an intermediate variable.  
We have no candidate manipulated variable; hence we decide to add a 
concentrated make-up stream as we did with the single tank in Lesson 3.  
We could add the stream to the first or the second tank - we seek advice: 
 
One advisor says, “Add it to the first tank, where the disturbance enters.  
That way, the manipulation can interact thoroughly with the disturbance; 
it’s a matter of success through cooperation.”  A second advisor says, 
“Add it to the second tank.  That way the manipulated variable can affect 
the controlled variable more directly, through one tank instead of two.”  
This advice brings to mind the difference we have seen between first- and 
second-order responses.  Yet the first advisor is better-dressed, friendlier, 
and has a comforting manner - we decide to add the make-up stream to the 
first tank. 
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Material balances on the solute give 
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We expect to use a relatively small make-up flow Fc of concentration CAc; 
hence we make the approximation that F + Fc ~ F.  Hence 
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 (4.11-2) 

 
As is our custom, we write (4.11-2) at a steady reference condition and 
subtract this reference to leave the variables in deviation form.  After 
taking Laplace transforms, we eliminate intermediate variable C′

A1(s) to 
find 
 

( )( ) ( )( ) )s(F
1s1s

FC)s(C
1s1s

1)s(C '
c

21

Ac'
Ai

21

'
2A +τ+τ

+
+τ+τ

=  (4.11-3) 

 
The time constants are the usual volume-to-flow ratios.  The poles of the 
two transfer functions are negative, so adding a make-up stream has not 
made the system unstable.  Compare (4.11-3) to (4.5-4), which describes 
the two tanks without makeup flow.  Figure 4.11-1, the block diagram of 
(4.11-3), emphasizes that controlled variable CA2 is influenced by both 
disturbance CAi and manipulated variable Fc.   
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Figure 4.11-1:  Block diagram of two-tank mixing process 
 
4.12 step 3 - proportional control  
We will use proportional control.  Although we recognize the 
disadvantage of offset, as demonstrated in Lesson 3, we feel confident in 
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our ability to manage it at an acceptable level by increasing the controller 
gain.  The proportional algorithm is 
 

( )2Asetpt,2Againbiasc CCKFF −=−  (4.12-1) 
 
Should the outlet composition fall below the set point, the error will 
become positive.  A positive controller gain Kgain will increase make-up 
flow Fc above the bias value, which will act to increase the outlet 
composition.   
 
4.13 step 4 - choose set points and limits 
As in Section 3.16, we identify any applicable safety limits, choose the 
desired operating point, specify limits of tolerable variation about it, and 
supply make-up flow in sufficient quantity to counteract the anticipated 
disturbances.  
 

EQUIPMENT 
 
4.14 components of the feedback control loop 
We should consider the equipment more realistically.  Figure 4.14-1 is a 
block diagram showing the four components found in most process control 
applications: process, sensor, controller, and final control element.  Each 
block contains a transfer function that relates output to input.  The signals 
between blocks are Laplace transforms of deviation variables.  We 
recognize that the process will typically comprise multiple blocks for 
disturbance and manipulated variable inputs.  An example is the mixing 
tank process that shown in Figure 4.11-1. 
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Figure 4.14-1:  General block diagram of feedback control loop 
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The output signal that we have designated as the controlled variable y′c is 
measured by a sensor.  In our mixing tank example, we need some 
measurement that reliably indicates composition; depending on the nature 
of the solution, it might be a chromatograph, conductivity meter, 
spectrometer, densitometer, etc.   
 
The controller subtracts the sensor signal y′s from the set point y′sp and 
executes the controller algorithm Gc(s) on the error.  The subtraction is 
sometimes said to take place in the comparator. 
 
The controller output y′co drives a final control element to produce 
manipulated variable x′m.  In chemical process industries this is most often 
a valve in a pipe carrying some fluid stream, but it could also be a motor, a 
heater control, etc. 
 
4.15 transfer functions for loop components 
Although we are not yet ready to address hardware, we can improve our 
description of equipment behavior by posing transfer functions for each of 
the closed loop components indicated in Figure 4.14-1.  Notice that a 
transfer function has two main parts: steady and dynamic.   
• The steady part is the gain; gain indicates the magnitude of the effect 

of the transfer function on the input signal, and it performs the units 
conversion between input and output.  In (4.11-3), the transfer function 
that converts make-up flow Fc into outlet concentration CA2 has a gain 
of CAc/F.  The gain depends on these two process parameters, and the 
units are chosen to be consistent with those of the input and output 
signals.  The other transfer function in (4.11-3) has a dimensionless 
unity gain, independent of process parameters. 

• The dynamic part is everything else - all the system time constants and 
the functions of the Laplace variable s.  The dynamic part 
characterizes the way that an input signal is processed in time.  In 
(4.11-3), both transfer functions feature second-order dynamics. 

 
sensor 
Let us presume that the sensor is fast - really fast - so that negligible time 
elapses between a change in the controlled variable yc and its 
measurement ys.  Then the transfer function is  
 

'
cs

'
s yKy =  (4.15-1) 

 
Being really fast means that the transfer function has NO dynamic part.  
Such a transfer function indicates a “pure gain” process, one in which 
changes in the input are “instantaneously” seen in the output.  The 
dimensions of the gain Ks are  
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iablevarcontrolled
in_controller)(Ks =  (4.15-2) 

 
where the sensor is presumed to deliver the measurement to the controller 
in suitable “controller_in” units. 
 
controller 
We see that a proportional controller is also a pure gain process between 
error signal and controller response. 
 

'
c

'
co Ky ε=  (4.15-3) 

 
where the error is conventionally defined with the set point as positive: 
 

'
s

'
sp

' yy −=ε  (4.15-4) 
 
For now we will leave the controller signal dimensions unspecified.  
However, we can be sure that the gain has dimensions of 
 

in_controller
out_controller)(Kc =  (4.15-5) 

 
set point 
The error signal has dimensions suitable for the controller, which implies 
that ysp and ys have the same units.  However, the operator might prefer to 
have the set point expressed in the units of the controlled variable (so-
called engineering units), which implies that ysp,e and yc have the same 
units.  The set point transfer function performs this unit conversion; it is a 
pure gain process with gain identical to that of the sensor.  That is 
 

  (4.15-6) ssp KG =
 
final control element 
The valve is a mechanical device that takes some time to move.  We might 
imagine that a valve can change more quickly than a large chemical 
process vessel, and thus that for many control applications the valve 
dynamics can be neglected.  In our case, however, we will assume that the 
valve operates with first-order dynamics, such that 
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The valve gain has dimensions of 
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out_controller
flow)(Kv =  (4.15-8) 

 
CLOSED LOOP BEHAVIOR 

 
4.16 assembling the components into a closed loop 
The closed loop block diagram in Figure 4.14-1 shows how the loop 
components are arranged.  The transfer functions for the various 
components are defined in Section 4.15.  We will now use the block 
diagram rules to derive the equations for the closed loop, in three steps:   
• in general, good for any application of Figure 4.14-1 
• applying the choices we made in Section 4.15 
• adapting the general nomenclature of Section 4.15 to the two-tank 

mixing process 
 
We begin with the controlled variable, which is the output of the closed 
loop system, and work backward through the diagram until all paths are 
traced and the inputs appear. 
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At this point, we collect the controlled variable on the left-hand side. 
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Equation (4.16-2) shows how a controlled variable responds to a 
disturbance and set point inputs.  It is derived from Figure 4.14-1 and 
applies to any system that can be represented by the figure. 
 
We now specialize (4.16-2) with transfer functions we defined in Section 
4.15.  These use the general nomenclature of Figure 4.14-1, but depend on 
assumptions we made about fast sensors and first-order valves. 
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Equation (4.16-3) begins to show how the general transfer functions 
become specific functions of the Laplace variable s.  Now we further 
specialize (4.16-3) to the two-tank problem by substituting the process 
transfer functions and specific nomenclature from (4.11-3) or, 
equivalently, Figure 4.11-1. 
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 (4.16-4) 
 
Beneath its apparent complexity, (4.16-4) simply tells how the outlet 
concentration reacts to disturbances and to a set point input.  This closed-
loop response is compared in Figure 4.16-1 to the open-loop response of 
the process.   
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 Figure 4.16-1:  Comparing open- and closed-loop responses 
 
It is clear that the disturbance response has a different character, because 
the transfer function has changed.  IF we made a good decision on control 
algorithm, and IF we tune the controller properly, the closed-loop response 
should be better. 
 
4.17 some perspective on how we derived the closed-loop response 
Remember what we did: we proposed a block diagram of feedback control 
and derived the associated transfer functions between inputs and output.  
Then we substituted the component transfer functions appropriate to our 
particular problem.   
 
Instead of the block diagram algebra, we could have combined the Laplace 
domain equations of Section 4.15 directly, eliminating intermediate 
variables until we arrived at (4.16-4).   
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Furthermore, we could have proceeded entirely in the time domain, as we 
did in Lesson 3.  That is, the second-order process ODE could have been 
combined with the first-order valve ODE and algebraic equations for 
sensor and controller to arrive at an ODE for the controlled variable with 
disturbance and set point forcing functions. 
 
We have used new tools - the Laplace transform and the block diagram - 
but the underlying objective, and the relationships between inputs and 
outputs, were the same as working in the time domain.  This is not 
mysterious. 
 
4.18 calculating closed-loop responses 
But how does the closed-loop perform?  We approach this by simplifying 
(4.16-4). 
 

)s(C
FCKKK1ss111s

FCKKK1

)s(C
FCKKK1ss111s

1s

)s(C

'
sp,2A

v21

Acscv

v21

v212

v21

3

v21

Acscv

'
Ai

v21

Acscv

v21

v212

v21

3

v21

v

'
2A

τττ
+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
τττ
τ+τ+τ

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
τ

+
τ

+
τ

+

τττ
+

+

τττ
+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
τττ
τ+τ+τ

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
τ

+
τ

+
τ

+

τττ
+τ

=

  (4.18-1) 

 
Clearly we did not succeed at that...  As with (4.5-4) and (4.11-3), we 
would like to substitute a particular disturbance for C′Ai(s) in (4.18-1) and 
invert the result to obtain the time response of CA2.  Here we encounter an 
obstacle: our transform tables do not feature anything as complicated as 
(4.18-1).  Furthermore, to use partial fraction expansion we must find the 
roots of the cubic equation; however, we are unlikely to find an analytical 
expression for these.  That is unfortunate, because it would be helpful to 
know how the transfer function poles depend on the controller gain Kc. 
 
We resort to numerical methods.  Here is our plan: 
• do a partial-fraction expansion of each transfer function in (4.18-1) in 

terms of the poles 
• multiply each term in the expansion by the disturbance of interest and 

invert to find the response 
• for a particular value of controller gain Kc, find the poles numerically 
• repeat for different values of Kc to map out the behavior 
 
This expedient of using numerical calculations does not show us the 
functional dependence of the response on the parameters, but it does get 
the job done. 
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We will begin with the disturbance transfer function in (4.18-1).  The 
polynomial ratio part of the transfer function is written as the sum of 
fractions. 
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  (4.18-2) 

 
The poles of the transfer function are αi, and the coefficients Ci depend on 
these poles, as well as the numerator.  We will keep in mind that both αi, 
and Ci depend on the system time constants and gains, as well as the 
controller gain Kc.  Solving for the coefficients is an algebra problem.  The 
results are 
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Thus numerical values of coefficients Ci can be computed for each set of 
poles αi. 
 
Now we use expansion (4.18-2) to rewrite (4.18-1) for a disturbance 
response.  With no change in set point, C′A2,sp(s) is identically zero. 
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Now, as an example, we pose a step disturbance in the inlet composition. 
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We substitute the step disturbance (4.18-5) into the system model (4.18-4) 
to obtain 
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Each term inverts to a step response.  Remembering to apply the time 
delay, we find the result 
 

( ) ( ) (1 d 2 d 3 d( t t ) ( t t ) ( t t )d 31 2
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)   (4.18-7) 

 
Examining (4.18-7) we learn that the exponential terms contribute 
according to the magnitude of the pole αi: small poles (larger time 
constants) cause the term to persist.  We see that there will be offset, 
because C′

A2 does not go to zero at long times.  The amount of offset will 
depend on the magnitude of the coefficients Ci; our experience in Lesson 3 
would suggest that these will become smaller as the controller gain Kc 
increases. 
 
4.19 calculating the response for a particular example 
We begin with similar parameter values to our example in Lesson 3: 

F =  1.2 m3 min-1

Fc,r = 6×10-3 m3 min-1

V1 = 6 m3 (thus τ1 = 5 min) 
V2 = 4 m3 (thus τ2 = 3.33 min) 
CAi,r = 8 kg m-3

CAo,r = 10 kg m-3

CAc = 400 kg m-3

τv = 0.1 min 
Kv = 0.01 m3 min-1 controller_out-1 

Ks = 0.5 controller_in m3 kg-3  
 
We may calculate roots in (4.18-2) with calculators, spreadsheets, or 
computer code.  For example, using matlab we obtain roots of polynomial 
s2 + 3s +4 by    
 

>> roots ([1 3 4]) 
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ans = 
 
  -1.5000 + 1.3229i 
  -1.5000 - 1.3229i 

 
Table 4.19-1:  poles of closed loop disturbance transfer function 

Kc (out in-1) α1 (min-1) α2 (min-1) α3 (min-1) 
0 -10 -0.2 -0.3 

0.012 -10.0001 -0.2143 -0.2856 
0.024 -10.0003 -0.2437 -0.2561 

 
Notice that zero controller gain leads to poles equal to the negative inverse 
of the three system time constants.  Thus our closed-loop transfer function 
reduces to describe the behavior of the process alone, under open-loop 
conditions.  After using the poles in Table 4.19-1 to compute the solution 
(4.18-7) we obtain a plot of the response behavior.  Indeed controller gain 
can be increased to reduce the effects of the input disturbance. 
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Figure 4.19-1:  Step response of two tanks under proportional control 
 
4.20 surprise - increasing gain introduces oscillations! 
We have been very tentative with the gain setting, so we act more 
aggressively to suppress offset.  The poles become complex! 
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Table 4.20-1:  complex poles of transfer function 

Kc (out in-1) α1 (min-1) α2 (min-1) α3 (min-1) 
0.1 -10.001 -0.249 + j0.088 -0.249 - j 0.088 
10 -10.10 -0.198 + j1.00 -0.198 - j1.00 
50 -10.48 -0.011 + j2.20 -0.011 - j2.20 

 
We must modify (4.18-7) to accommodate complex numbers.  The roots 
α2 and α3 are complex conjugates, and (recalling our discussion of partial 
fraction expansion) so are coefficients C2 and C3.  We define four new real 
quantities to replace the complex ones: 
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  (4.20-1) 

 
We substitute these definitions into (4.18-7), recalling Euler’s relation, 
 

( ) ( btsinjbtcosee attjba +=+ )   (4.20-2) 
 
to obtain 
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Parameters A, B, a, and b are not variables with time, in the sense of CA2, 
but they do depend on the value of the controller gain Kc.  Parameters a 
and b are found (via the root-finding procedure) in Table 4.20-1.  A and B 
come via complex algebra from (4.18-3). 
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  (4.20-4) 

 
Taking data from Table 4.20-1 and using (4.20-4), we can plot response 
(4.20-3). 
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Figure 4.20-1:  Oscillatory step response 
 
For the single tank of Lesson 3, the closed loop behavior was qualitatively 
the same as that of the process itself.  Here, however, closing the loop has 
introduced behavior we would NOT see in the process alone: the response 
variable oscillates in response to a steady input.  The key is the third-order 
characteristic equation, which can admit complex roots.  The transfer 
function is third order because the second-order process was placed in a 
feedback loop with a first-order valve.  If the system mathematics provide 
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a true representation of the process equipment, we will see oscillations in 
operation. 
 
4.21 closed-loop stability by the Bode criterion 
Figure 4.20-1 shows us that, despite the onset of oscillations, increasing 
gain suppresses the offset.  However, we must still be mindful of the 
possibility of instability.  In Figure 4.21-1 we plot the poles on a complex 
plane.  We see that increasing gain brings the closed loop to the point of 
oscillation and then increases the imaginary (oscillatory) component.  We 
observe also that the real component approaches zero.  Recalling that 
stability depends on the real parts of the poles being negative, we see that 
the closed loop will become unstable at a controller gain between 50 and 
60.   
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Figure 4.20-1:  Root locus plot 

 
This root locus plot provides a map of the stability limit; this is 
particularly helpful, because we were unable to derive a single expression 
that showed the effect of controller gain on the real parts of the poles.  We 
might imagine that finding the poles will only become more difficult as we 
consider more complicated processes and controllers.  Hence we introduce 
an alternative means of predicting stability: the Bode criterion. 
 
We develop the criterion intuitively; recalling Figure 4.14-1, we begin by 
realizing that instability in a previously stable system happens because of 
feedback in a closed loop.  Suppose that the output signal y′c contains 
some fluctuating component at a particular frequency ωc.  This component 
is inverted in the comparator by being subtracted from the set point, and is 
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fed to the controller.  If the loop (process, controller, sensor, valve, etc.) 
contributes a phase delay of -180° at frequency ωc, the inverted signal 
returns to the output in phase to reinforce the fluctuation.  If in addition 
the amplitude ratio at ωc is greater than one, the fluctuation will grow.   
 
We are not contriving a circumstance here.  In any realistic process there 
will be small disturbances, fluctuations over a wide domain of frequency.  
The loop processes these fluctuations according to its frequency response 
characteristics.  Depending on the amplitude ratio, signals at some 
frequencies may be amplified.  Assuredly, signals at high frequencies will 
be delayed by at least 180°.  If these conditions overlap, there will be an 
oscillating signal that will grow.  We need not supply it; the system will 
select it from the spectrum of background noise.  This intuitive 
development is described in more detail by Marlin (Sec.10.6). 
 
To turn our intuition into a method, we return to the general description of 
the closed loop transfer function in (4.16-2).  Recall that the poles are the 
roots of the characteristic equation, which is the denominator of the 
transfer function.  This characteristic equation is always of the form 1 plus 
the product of the transfer functions around the loop.  For convenience, we 
will call this product the loop transfer function GL. 
 

L

mvcs

G1
GGGG1equationsticcharacteri

+=
+=

 (4.21-1) 

 
It is the amplitude ratio and phase angle, that is, the frequency response, of 
GL that determines whether signals will grow in the loop.  First we find ωc, 
the frequency at which the phase delay is -180°.  At this crossover 
frequency, we inspect the amplitude ratio; if it is less than one, the system 
will attenuate reinforced disturbances, and thus be stable.   
 
Thus the Bode criterion evaluates the stability of (1 + GL)-1 from the 
frequency response of GL. 
 
For our process, (4.16-4) gives 
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The phase angle of GL is the sum of the phase angles of the various 
elements in (4.21-2).   
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Equation (4.21-3) may be solved for the crossover frequency ωc; that is, 
the frequency at which the loop delays the signal by -180º. 
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The amplitude ratio of GL is the product of the amplitude ratios of the 
various elements in (4.21-2).   
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We are particularly interested in the amplitude ratio at the crossover 
frequency, RAc. 
 

2
v

2
c

2
2

2
c

2
1

2
c

vsc
Ac

Ac
1

1

1

1

1

1KKK
F

CR
τω+τω+τω+

=  (4.21-6) 

 
Using the data in Section 4.19, we find the crossover frequency from 
(4.21-4) to be 2.25 radians minute-1.  We notice that phase lag in the loop 
depends only on the tanks and valve; the proportional controller, being a 
“pure gain” system, contributes no lag to the dynamic response of the 
loop.  Hence the crossover frequency does not vary with the controller 
gain setting. 
 
Using the crossover frequency and further data from Section 4.19, we find 
from (4.21-6) that the crossover amplitude ratio will be 1 when the 
controller gain Kc is 52.55.  The effect of controller gain is to amplify the 
signals in the loop.  Around Kc = 52.55, therefore, the system output will 
oscillate unabated at frequency ωc.  At higher gain settings, the amplitude 
of the oscillation will grow in time.  (The frequency of these oscillations 
depends on the poles of the transfer function.) 
 
Figure 4.21-1 is a Bode plot for the loop transfer function GL, showing 
gains below, at, and above the instability threshold.  The stability 
threshold (amplitude ratio = 1, phase angle = -180°) is shown by a single 
point at the crossover frequency 
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Figure 4.21-1:  Bode plot for loop transfer function 
 
Figure 4.21-2 shows unstable step responses at gains of 60 and 100.  The 
latter response quickly gets out of hand.  Notice how the make-up flow 
varies in response to the increasing error in the outlet composition.  
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Figure 4.21-2:  Step response for two-tank process at high gains 
 
4.22 tuning based on stability limit - gain and phase margin 
We tune a controller seeking good performance, somewhere between the 
extremes of “no control” and “instability”.  One method of tuning is 
simply to maintain a reasonable distance from the instability limit and 
presume that the result is an improvement over having no control.  Thus, 
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we find the instability threshold and tune the controller to leave margins 
between these conditions and normal operation.  The margins are 
indicated in Figure 4.22-1, which shows a Bode plot for the loop transfer 
function GL at some arbitrary controller setting. 
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Figure 4.22-1:  Illustration of gain margin and phase margin at a 
single controller setting 
 
The gain margin and phase margin are the distances shown on the 
ordinates.  Their definitions are 
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( )stabilityfor0180PM

stabilityfor1
R
1GM

1

Ac
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>=
 (4.22-1) 

 
The controller setting determines the amplitude ratio and phase angle 
curves.  From those curves we then calculate the margins to see if they are 
satisfactory:   
 

(1) use a phase angle of -180° to find the crossover frequency ωc 
(2) use an amplitude ratio of 1 to find the frequency ω1 
(3) use ωc to find the amplitude ratio RAc, and thus GM 
(4) use ω1 to find the phase angle φ1, and thus PM 

 
In Figure 4.22-1, the system is stable.  However, as the controller gain is 
increased, the Bode plot will shift so that ω1 and ωc approach each other.  
At the instability threshold, ω1 equals ωc, the gain margin is 1, and phase 
margin is zero.   
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A procedure for tuning proportional controllers by stability margin is: 
 

(1) use a phase angle of -180° to find the crossover frequency ωc 
(2) at ωc, find the gain that makes RAc = 1 (stability limit) 
(3) at ωc, reduce the gain to make RAc = 1/GM (gain margin) 
(4) use a phase angle of PM -180° to find the frequency ω1 
(5) at ω1, find the gain that makes RA = 1 (phase margin) 

 
Marlin (Sec.10.8) recommends tuning to maintain GM ~ 2 and PM ~ 30°.  
Typically one or the other will be limiting. 
 
Figure 4.22-2 shows the results of calculations for our tank example.  
Earlier, we found the crossover frequency from (4.21-4).  Then (4.21-6) 
was solved for the controller gain that gave RAc = 0.5 (thus GM = 2).  The 
result was Kc = 26.3.  Then (4.21-3) was solved for the frequency ω1 to 
give a phase angle of -150° (thus PM = 30°).  Then (4.21-5) was solved 
for the controller gain that gave an amplitude ratio of 1 at frequency ω1.  
The result was a much lower gain of 7.  Therefore for our system, PM is 
limiting, and the lower gain would be chosen.  For reference, Figure 4.22-
2 also shows the stability limit determined earlier. 
 
The gain and phase margins have given us a tuning criterion for selecting 
a controller gain.  Using the chosen gain, we can now predict the 
performance in response to disturbances and set point changes.  The 
calculations would be similar to those illustrated in Sections 4.19 and 
4.20: a partial fraction expansion leading to an expression for the 
response, with parameter values based on numerical root-finding. 
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Figure 4.22-2:  Bode plot illustrating GM and PM limits on gain 
 
4.23 conclusion 
We have completed dynamic analysis and control of a more complicated 
process than in Lesson 3.  In doing so we have introduced new tools for 
analysis - the Laplace transforms and block diagrams - and developed 
stability and tuning criteria. 
 
Was it a good idea to listen to the appealing advisor and put the make-up 
flow into the first tank?  A good way to examine the question would be to 
repeat the full analysis for the other case.  Even without doing that, 
however, we might reflect how removing one lag from the system might 
affect the Bode stability criterion for the closed loop… 
 
4.24 reference 
Marlin, Thomas E. Process Control. 2nd ed. Boston, MA: McGraw-Hill, 2000. 
ISBN: 0070393621.
 
4.25 nomenclature 
a constant 
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A constant 
A1,A2 constants of integration 
b constant 
B constant 
C constant 
C1… constants in partial fraction expansion 
CA1 intermediate stream concentration of solute A  
CA2 exit stream concentration of solute A  
CAc make-up stream concentration of solute A  
CAi inlet stream concentration of solute A  
CAs reference concentration of solute A at steady state  
ΔC change in solute concentration 
F volumetric flowrate 
Fc volumetric flowrate of make-up stream 
f function  
G transfer function 
Im operator that takes imaginary part of complex number 
j square root of -1 
K gain (time-independent part of transfer function) 
L Laplace operator 
N(s) polynomial in s 
r dummy variable in polynomial characteristic equation 
Re operator that takes real part of complex number 
RA the amplitude ratio of the loop transfer function 
RAc the amplitude ratio of the loop transfer function at the crossover frequency 
s complex Laplace domain variable 
t time 
td time at which disturbance occurs 
U unit step function 
V1 volume of tank 1 
V2 volume of tank 2 
x(t) input signal to system 
y(t) output signal from system 
α1 … roots of polynomial in s 
ε error; set point minus controlled variable 
τ1 time constant of tank 1 
τ2 time constant of tank 2 
τv time constant of valve 
ξ dummy variable of integration 
ω radian frequency (has dimensions of radians time-1) 
ωc crossover frequency, at which loop transfer function lag is -180° 
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