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5.0 context and direction 
In Lesson 4, we encountered instability.  We think of stability as a 
mathematical property of our linear system models.  Now we will embed 
this mathematical notion within the practical context of process 
operability.  That is, we must not forget that our system models help us 
operate processes.  Along the way, we will encounter a special category of 
instability/inoperability: the non-self-regulating process. 
 

DYNAMIC SYSTEM BEHAVIOR 
 
5.1 remember the stability criterion for linear systems 
In Section 4.9, we introduced a stability criterion for a linear system: non-
negative poles in the transfer function (5.1-1) indicate that the system 
output y(t) will not remain stable in response to a system input x(t).   
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As a simple example, consider a first-order system: 
 

( )dy y Kx y 0 0
dt
′

′ ′ ′τ + = =  (5.1-2) 

 
We know that the Laplace transform representation is completely 
equivalent. 
 

( ) ( )Ky s x s
s 1

′ =
τ +

′  (5.1-3) 

 
The transfer function in (5.1-3) has a single pole at -τ-1.  If the time 
constant τ is a positive quantity (as in our tank), the pole is negative and 
the response is stable (as we have seen in Lesson 3).   
 
If the time constant were a negative quantity, however, the pole would be 
positive.  As we saw in Section 4.9, the response would be unstable 
because of the exponential term in the solution of (5.1-2) 
 

t
y (t) e

−
τ′ �  (5.1-4) 

 
This unbounded response could be in a positive or negative direction, 
depending on the sign of the gain K.  We will address on another occasion 
what sort of system might have a negative time constant; for now we 
recognize that encountering an unstable linear system should cause us to 
look carefully at the process whose behavior it represents. 
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5.2 remember that feedback control can make stable systems go unstable 
Recall from Section 4.21 that we took a perfectly stable second-order 
process, placed it in a feedback loop with a first-order valve, and applied 
proportional-mode control.  By increasing the controller gain too far, we 
could drive the system to instability.  We could use our linear stability 
criterion to predict the onset of instability as we did in Section 5.1.  That 
is, we compute the poles of … not the process transfer function, but the 
transfer function that represents the process in feedback loop with other 
components!   
 
5.3 the special case of zero poles 
Now consider a system with a single pole whose value is zero. 
 

( ) ( )Ky s x s
s

′ =
τ

′  (5.3-1) 

 
This is a non-negative pole; we claim this indicates an unstable system.  If 
we apply a step disturbance to (5.3-1), we obtain upon inversion: 
 

ty K′ =
τ

 (5.3-2) 

 
Certainly y’ increases without bound, so that it qualifies as unstable.  You 
should try different bounded disturbances in (5.3-1), though, to explore 
whether this is always the case. 
 
5.4 the integrator and the non-self-regulating process 
The system of Section 5.3, far from being an oddball case, is actually quite 
important.  It is known as an integrator.  An example is shown in Figure 
5.4-1. 
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Figure 5.4-1:  Tank with independent inlet and outlet flows 

 
The inlet flow is simply given, out of our control, and the outlet is 
pumped.  The material balance gives 
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i
dhA F
dt

= − oF  (5.4-1) 

 
Both inlet and outlet flow disturbances affect the tank level h.  We 
envision a steady reference condition in which the flows are balanced at Fr 
and the level is at hr.  Expressing (5.4-1) in deviation variables, we obtain 
 

i
dhA F
dt
′

′= − oF′  (5.4-2) 

 
Integrating (5.4-2) from an initial deviation of zero, we obtain 
 

( )
t

i o0

1h F F
A

′ ′ ′= −∫ dt  (5.4-3) 

 
Thus the name integrator: the response variable is simply the integral of 
whatever inputs are fed to it.  This can be a big problem.  Suppose that this 
is your tank.  You observe that Fi is running quite steadily, so you adjust 
Fo to match it and go home for the night.  Just after you leave, Fi increases 
to a new steady value.  We derive the results from (5.4-3): 
  

i oF Fh
A
′ ′−′ = t  (5.4-4) 

 
In this simple case, the numerator is a positive constant.  You can 
substitute numbers into (5.4-4) to help you estimate what time of night 
you will receive a telephone call. 
 
The integrator has a zero pole; if we generalize from (5.4-2) we see a 
corollary of this property: 
 

( )dy f y
dt

≠  (5.4-5) 

 
Recall that y is a quantity that can accumulate in a system; it could be total 
mass, amount of a chemical species, or energy, for example.  Equation 
(5.4-5) tells us that the rate of accumulation of y is not affected by the 
inventory: your tank level may be rising fast, but the flow keeps on 
coming.  An equivalent statement of (5.4-5) is that the net inflow of y 
across the system boundary does not depend on how much y is within the 
boundary. 
 
Processes that contain an integrator are known as non-self-regulating.  
This term comes directly from the property expressed by (5.4-5).  By 
contrast, the first order system in (5.1-2) will come to a new steady value 
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after a disturbance.  It can do this because its rate of accumulation does 
depend on the inventory y, and we call it self-regulating.  Clearly a non-
self-regulating process will require frequent attention.   
 
5.5 getting practical - when self-regulation is not 
We have identified formal stability with negative poles in the transfer 
function.  Of the non-negative poles, we have given a special name - 
integrator - to systems with zero poles, and we know to watch out for 
them.  These results of linear stability theory are quite useful.  However, 
we must never forget that our models are only approximations of the real 
processes.   
 
As an illustration, we cite Shinskey (2002), who asserts that non-self-
regulating behavior is a matter of degree, not strictly confined to systems 
with zero poles.  To see this, we rearrange the first-order system of (5.1-
2). 
 

( )dy 1 y x y 0 0
K dt K

′τ ′ ′ ′+ = =  (5.5-1) 

 
We suppose that a particular system features a time constant and gain that 
are both large.  Under these circumstances, the term involving the 
inventory y’ might be neglected in comparison to the others, leaving 
 

( )dy x y 0 0
K dt

′τ ′ ′= =  (5.5-2) 

 
In the limit of (5.5-2), our system is an integrator.  The fact that it is not 
strictly an integrator is irrelevant if its behavior approaches that of (5.5-2): 
in the matter of midnight phone calls, the process might well be 
considered non-self-regulating. 
 
Let us illustrate by a tank with gravity-driven outlet flow.   
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Figure 5.5-1:  Tank with gravity-driven outlet flow 
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We take the simplest course and assume that the outlet flow is directly 
proportional to the liquid level h.  The proportionality constant k is small 
when the outlet valve is constricted, and increases as the valve is opened.  
A material balance gives 
 

i
A dh 1h
k dt k

′
′+ = F′  (5.5-3) 

 
where we base deviation variables on a steady reference condition.   
 
Formally, (5.5-3) represents a self-regulating process.  However, consider 
for a tightly constricted valve, k is small.  In system terms, this means that 
gain 1/k and time constant A/k are both large.  The large gain means that 
small disturbances Fi’ have a large effect on response h’.  The large time 
constant means that the response will be slow. 
 
In physical terms, the constricted outlet forces the liquid level to rise 
significantly to respond to relatively small increases in the inlet flow.   It 
will take a while to reach a level sufficient to push the flow out, so that 
there will have been a lot of accumulation in the tank.  If the constriction 
is sufficiently severe, you will still receive your midnight telephone call, 
even though your linear system model (5.5-3) has a negative pole.  The 
process is effectively non-self-regulating. 
 
5.6 we want our processes to be operable 
When we speak of “instability”, we speak of unbounded change in the 
response variable, as in (5.1-4), (5.3-2), or (5.4-4).  Of course, nothing 
really became unbounded: the tank level rose only until it spilled over, or 
drained until it was empty.  What really matters to us is process 
operability.  A process that wakes us at midnight is not operable; it will 
always need attention, or else run into troublesome limits.  We prefer that 
our processes be operable, and process control should contribute to that 
end; therefore, a non-self-regulating process should be placed under 
automatic control. 
 
Linear system stability calculations are useful indications of operability; 
however, Section 5.5 taught us that operability depends on the context of 
the operation.  Thus “operability” is “stability” made practical.  A control 
engineer must ask, “Under what conditions can this process become 
inoperable?” 
 
• Part of the answer may come from applying stability theory, either 

through formal calculations, or by knowing what to look for while 
tuning a controller.  Most practical control loops will have a stability 
limit.  Stability calculations in Section 4.21 helped us select a 
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controller gain for operability.  In this way, we seek to determine a 
degree of control. 

• Another part of the answer may come from an intuitive examination of 
the process, seeking to understand what affects the inventory of each 
conserved quantity (mass, species, energy).  This is especially useful 
for processes that contain multiple operations.  Such an examination 
can reveal both where control is needed, and where control might 
cause a problem.  Here we are seeking a scheme of control. 

 
Engineering often requires a blend of rigorous analysis and informed 
intuition.  For the remainder of Lesson 5 we will examine several process 
features that affect operability.  Much of this treatment is based on Downs 
(1992). 
 
5.7 we must control the liquid level integrator 
Suppose that we desire to maintain a constant level in the tank of Figure 
5.4-1.  To make this process self-regulating, we must apply automatic 
control.  We must choose a control scheme; perhaps conditioned by 
steady-state thinking, we consider managing inventory by managing the 
inlet and outlet flows: after all, doesn’t IN = OUT at steady state?  We 
arrange in Figure 5.7-1 to measure the instantaneous inlet flow and adjust 
the outlet flow to match.   
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Figure 5.7-1:  Feedforward control of inventory by manipulating 

outlet flow 
 
Such a scheme may allow you to stay at home all night, because it will 
tend to reduce imbalance between flows.  However, any discrepancy 
between the flow rates - through calibration error, instrument drift, 
shortcomings of the controller, insufficient adjustment of the pump motor 
speed - will contribute to accumulation through (5.4-3).  If that 
discrepancy is sufficiently biased, over time the level will creep to an 
undesired value. 
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If our objective is to control level, then we should measure the level!  The 
scheme of Figure 5.7-1 did not correct the basic fault of the integrator; in 
Figure 5.7-2 we apply a feedback loop to allow the inventory to affect the 
rate of accumulation.  Thus the process (under control) becomes self-
regulating: a rise in level will trigger an increase in the outlet flow rate, 
and so forth.   
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Figure 5.7-2:  Feedback control of inventory 

 
(By the way, in a later lesson we will return to feedforward control 
schemes and find them to be very useful when appropriately applied.) 
 
5.8 inventory of individual chemical components 
Downs (1992) recommends that a key to achieving good process 
operability is ensuring that the inventory of each chemical species is self-
regulating.  Thus we consider further the tank of Figure 5.7-2, letting the 
inlet flow comprise chemical species A and B.  We write the component 
material balance for A, assuming that the tank is well-mixed: 
 

Ao i Ai o Ao
d VC FC F C
dt

= −  (5.8-1) 

 
We saw this relationship in Lesson 3.  Here, we notice particularly that the 
inventory of component A (VCAo) does influence the outlet path of A 
(FoCAo) through the composition, so that (5.4-5) does not apply: the 
system is self-regulating.  This is the behavior we recall from the 
disturbance responses we computed in Lesson 3. 
 
When we explore more extensive processes, we may not be able to write 
the component balance in such concise form as (5.8-1).  However, we can 
still apply the principle of (5.4-5) and examine qualitatively whether the 
inlet and outlet paths for a component depend on its inventory. 
 
5.9 example of a solvent recovery process 
Figure 5.9-1 shows a scrubber and distillation column used to recover 
volatile solvent A from an inert gas stream.  We have already installed 
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plausible level control schemes (indicated by feedback loops with the 
control valves omitted) to ensure that individual vessels are self-regulating 
with respect to mass. 
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Figure 5.9-1  Basic process scheme for recovery of solvent A 
 
We proceed methodically: 
examine scrubber for component A 

• inlet streams are independent of the inventory of A 
• overhead gas stream is independent of  A 
• flow of A in the bottoms stream will increase as the bottoms 

concentration of A rises, as in Section 5.8 
By virtue of the bottoms stream, the scrubber is self-regulating for 
component A.  As a practical illustration, a rise in the inlet composition of 
A will, over time, result in a higher flow of A from the bottom of the 
scrubber.  (We remark here that this is a qualitative assessment that 
presumes good equipment operation, such as sufficient scrubber 
performance and a well-tuned level-control loop.  Our purpose here is not 
to perform a detailed design or simulation; rather, it is to determine 
whether this process can, in principle, be self-regulating.) 
 
examine scrubber for water 

• the conclusion for water is identical to that for A 
 
examine scrubber for N2
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• the inventory of N2 is indicated by the pressure in the vessel.  Both 
inlet and outlet flows of gas will be affected by the vessel pressure. 

Hence, the scrubber is self-regulating for N2. 
 
examine the distillation unit (including accumulator) 

• the flow of components in the bottoms and distillate streams 
depend on the composition of the column sump and accumulator 
inventories   

As with the tank of Section 5.8, the level-control loops make the 
distillation unit self-regulating for both components. 
 
examine the entire process 

• the two inlet streams are independent of the process 
• the scrubber overhead gas stream regulates N2 
• the distillate and bottoms streams regulate water and component A 

The two unit operations are simply arranged in series, so that nothing 
about their combination affects the conclusions we had drawn from the 
individual units. 
 
5.10 the process becomes non-self-regulating  
A reasonable process objective would be to recover component A in a 
desired, not arbitrary, concentration.  Hence, we install a composition 
controller on the distillate stream.  In addition, we can reduce utility costs 
by recycling the bottoms stream to the scrubber.  The results of these 
changes are shown in Figure 5.10-1. 
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Figure 5.10-1  Recovery process with composition control and recycle 
 
We repeat the examination of Section 5.9.  We see quickly that the 
scrubber is unaffected: addition of a new independent inflow stream does 
not change the ability of the level-control loop to regulate the inventories 
of A and water.   
 
examine the distillation unit (including accumulator) for A 

• the inlet stream is independent of conditions in the unit 
• the distillate composition is now fixed, but the removal of A can 

still vary in response to conditions because the distillate flow can 
vary.   

Hence distillation is self-regulating for component A.  For example, 
should the inflow of A increase to the column, the distillate flow can 
increase to remove it.   
 
examine the distillation unit (including accumulator) for water 

• the inlet stream is independent of conditions in the unit 
• fixing the distillate composition means that water can be removed 

overhead only at a rate in proportion to the removal of A.  Hence, 
this stream no longer depends on the inventory of water. 

• water may still be removed in the bottoms, as required. 
By virtue of the level-control loop on the bottoms, distillation is self-
regulating for water. 
 
examine the entire process 

• the two inlet streams are independent of the process 
• the scrubber overhead gas stream regulates N2 
• the distillate stream regulates component A 
• the distillate stream does not regulate water. 

 
Although each individual unit operation is satisfactory, the combination 
can no longer regulate the inventory of water.  Water enters 
independently; water leaves only in proportion to the flow of A.  To 
illustrate, suppose there is a step increase in water feed.  The scrubber 
level controller responds by increasing the feed to the distillation column.  
The column responds by increasing the bottoms flow, and thus the recycle 
to the scrubber.  The two sump controllers engage in a battle that one must 
lose, as the water inventory continues to rise. 
 
To correct this problem, we must make at least one of these streams 
respond to the amount of water in the process.  Downs (1992) gives the 
solution: as shown in Figure 5.10-2, control the scrubber sump with the 
water make-up flow.  If we are designers, we still have further decisions to 
make about equipment sizing and control structure, but at this point we 
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have avoided one problem, at least, that no amount of post-design 
controller tuning could have solved. 
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Figure 5.10-2  Control scrubber inventory with make-up water stream 
 
Sections 5.9 and 5.10 have presented a lengthy example.  Let us 
summarize the approach that was illustrated: 

• ensure that overall mass inventory is regulated 
• methodically examine each inlet and outlet stream for each process 

unit, as well as the whole process, with respect to each chemical 
species.  Remember that good individual units can work poorly in 
combination. 

• determine the qualitative relationship between the flow of each 
component and the inventory of that component.  Certainly, there 
may be no relationship. 

• we call the relationship qualitative because we are not considering 
the actual timing or magnitude of response to disturbances, nor 
details of equipment performance (e.g., whether the trays might 
flood, or if there is enough packing to remove all the solvent from 
the gas).  These are matters of detailed design, to be addressed 
after we have established our basic process structure.  Therefore, 
presume that all equipment works well, including any control loops 
that have already been specified. 

• look out for composition controllers, because these restrict the flow 
of the impurity components.  Look out for recycle streams, because 
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these eliminate an outlet path.  These are not bad process features, 
but the control scheme must accommodate them. 

• if any component has no stream that responds to its inventory, the 
process must be altered to supply one.  Often this is accomplished 
by a change in control scheme. 

 
5.11 chemical reactions provide paths in and out of a process 
A reactant may not leave a process by any outlet flow path at all, but 
rather be entirely consumed within it.  Therefore, in applying the method 
of Section 5.10 to a process with chemical reactors, we must extend the 
terms ‘stream’ and ‘flow’ to include consumption and generation.  The 
general principle of (5.4-5) still applies: if the rate of reaction of a species 
does not depend on the inventory of that species, then the process may be 
non-self-regulating. 
 
Kinetic expressions most often do depend on the concentration, so that 
problem may actually arise outside the reactor, and because of the control 
scheme.  Downs (1992) gives an example of a reactor whose level, 
temperature, and composition are all controlled.  The level is controlled by 
manipulating the outflow stream.  The temperature is controlled by 
manipulating flow of a service fluid.  The composition is controlled by 
manipulating the flow of a reactant recycle stream.   
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Figure 5.11-1  Reactor with three control loops 
 
Let us examine each in/out path for a reactant A: 

• the inflow of A in the feed is independent 
• the inflow of A in the recycle stream does depend on the inventory 

of A, because it is manipulated to keep the concentration at set 
point 

• the outflow of A varies to keep the inventory constant, because the 
level controller manipulates the flow rate 
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• the consumption of A depends on the volume of the reactor (set by 
the level controller), the temperature (set by the temperature 
controller), and the concentration of A (set by the composition 
controller).  For well-behaved control loops, it is constant. 

Everything seems fine.  In fact, because of the level and composition 
controllers, we are actively working to keep the inventory of A constant. 
 
The problem does not become apparent until we consider the reactor in the 
context of other process units.  Suppose the concentration of A in the feed 
stream undergoes a step reduction.  The level and composition controllers 
respond: the composition controller increases the supply of recycle to 
return the total inflow of A to normal, and the level controller adjusts the 
outlet flow as needed to keep the volume the same.  Thus A reacts at the 
normal rate, and therefore excess A departs the reactor at the normal rate.   
 
Somewhere downstream, a separation unit is being fed A at the normal 
rate, but being asked to return A at a higher than normal rate.  It can do 
this only while its inventory lasts.  The reactor has put the problem off 
onto other units, but there remains a problem nonetheless.  We discover it 
by examining the component inventories, but doing so in the context of 
the larger process.  
 
How would you solve this problem? 
 
5.12 conclusion 
We enlarged our notions of stability to develop a concept of what makes a 
process operable.   In doing this, we have ranged qualitatively over a 
variety of chemical processes.  In some cases these have included multiple 
operations and multiple control loops.  In the next lessons, we will return 
to analysis of a single operation; as we deepen our understanding, try not 
to forget the broad perspective we have attempted here. 
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