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6.0 context and direction 
A tank reactor with an exothermic reaction requires a more elaborate 
system model, because its outputs are temperature and composition.  
Furthermore, the model is nonlinear, which forces us to make a linear 
approximation to solve it.  We will add the derivative mode to our PI 
controller to increase both stability and responsiveness.  The closed loop 
will show how automatic control can stabilize an inherently unstable 
process. 
 

DYNAMIC SYSTEM BEHAVIOR 
 
6.1 exothermic chemical reaction in a stirred tank reactor 
A second-order dimerization reaction occurs in an overflow stirred tank 
reactor.  The reactor is equipped with a heat transfer surface (perhaps 
jacket, coils, or bayonet) that contains a flow of cooling water.  We wish 
to know how the outlet composition and temperature may vary with time. 
 
6.2 dynamic model of the reactor  
With two output variables, we face two balances, as well as several 
supporting relationships.  The mole balance on the reactant A  
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requires a second-order kinetic rate expression for the rate of 
disappearance of A, including Arrhenius temperature dependence. 
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The energy balance must account for the reaction and heat transfer. 
 

( ) QrVH)TT(CF)TT(CF
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dTCV ARrefprefipp −−Δ−−ρ−−ρ=ρ  (6.2-3) 

 
Once again, we will regard physical properties as independent of 
temperature.  Enthalpies are defined with respect to an arbitrary 
thermodynamic reference temperature.  For an exothermic reaction, the 
heat of reaction ΔHR will be a negative quantity, and will thus tend to raise 
the reactor temperature T.  The rate of heat transfer Q depends on the 
logarithmic temperature difference 
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in which the well-mixed tank temperature T is uniform and the coolant 
temperature Tc varies from inlet to outlet.  We will presume that the 
coolant supply temperature Tci is quite stable and thus not consider it as a 
disturbance.  The overall heat transfer coefficient depends on the film 
coefficients on the inner and outer surfaces of the heat transfer barrier; we 
will neglect any conduction resistance in the barrier itself. 
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The outer film coefficient ho depends on the rate of stirring in the tank, as 
well as the variation of physical properties with temperature.  With 
constant physical properties, there is no reason for ho to vary.  Inner 
coefficient hi depends on the flow of coolant.  Invoking typical internal-
flow behavior, we write 
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If we write (6.2-6) at a reference condition, we can express the flow 
dependence of hi as 
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For flow in tubes, n is often about 0.8. 
 
The main structure of the model is given by the balances (6.2-1) and (6.2-
3).  These relate the outlet temperature and composition to their inlet 
values.  Supplementary equations are needed to describe the reaction 
kinetics and heat transfer.  We see that the two balances will be coupled 
through the temperature dependence of the reaction rate parameter k in 
(6.2-2).  Heat transfer is described by equipment performance equation 
(6.2-4) and the empirical relationship (6.2-7) that describes convective 
heat transfer in conduits.  These latter equations show how the coolant 
flow Fc influences the reactor outlet temperature T. 
 
Even so, we are not finished, because we have not yet accounted for the 
outlet coolant temperature Tco in (6.2-4).  Therefore, we must write an 
energy balance on the coolant. 
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where ‹T c› is the average coolant temperature in the coolant volume.   
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To proceed with (6.2-8), we must express the average temperature in 
terms of the inlet and outlet temperatures.  This would be an entertaining 
diversion, but for the primary purposes of Lesson 6 we will assume that 
heat exchanger outlet temperature adjusts much more quickly than does 
the tank temperature T, so that we can neglect the accumulation term in 
(6.2-8) and write it as 
 

Q)TT(CF cicopccc =−ρ  (6.2-10) 
 
Justifying this assumption would involve comparing the characteristic 
times of (6.2-3) and (6.2-8).  We have implicitly made a similar 
assumption already in (6.2-4), in which we have said that the rate of heat 
transfer depends on the instantaneous values of the inlet and outlet 
temperatures according to a relationship that was derived for the steady 
state. 
 
Taken together, the equations of this section describe how the outlet 
temperature and composition vary in time due to disturbances in inlet 
temperature, inlet composition, and coolant flow rate.  The coolant outlet 
temperature is an intermediate variable in the system. 
 
6.3 we encounter nonlinear equations 
The equations in Section 6.2 are nonlinear: the outlet composition is 
squared, the temperature is an argument in exponential and logarithmic 
functions, the coolant flow is raised to a power.  Even (6.2-10) is 
nonlinear, because it contains the product of variables Fc and Tco.  
Analytical solution is highly improbable.  We may attack the problem by 
numerical simulation, or by simplifying it.  We will first follow the latter 
course for two reasons: 
• A numerical solution can show how individual cases behave, but not 

general behavior.  An analytical solution, by virtue of its mathematical 
expression, will usually instruct us in parameter dependence.   

• Simplifying by linear approximation will often give us a reasonable 
approximation near the reference set point.  If the control objective is 
to maintain the process at set point, then the approximate description 
may be entirely satisfactory for achieving good control. 
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6.4 making linear approximations with Taylor series 
Given a function f, we specify some reference value of the independent 
variables, and represent the function in the neighborhood of that reference 
point as a series of terms. For a function of one variable: 
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For a function of more than one variable: 
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By retaining only linear terms, we obtain a linear approximation.  The 
derivatives are evaluated at the reference point.  Of course, the 
approximation is exact at the reference, and it is often satisfactory in some 
region about the reference value.   
 
6.5 linear approximation to the material balance 
We apply (6.4-2) to material balance (6.2-1). 
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At the reference condition, (6.5-1) becomes 
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We subtract (6.5-2) from (6.5-1) and define deviation variables. 
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We obtain the partial derivatives in (6.5-3) from (6.2-2). 
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Here kr is the rate constant at the reference condition. 
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We substitute (6.5-5) and (6.5-7) into linearized material balance (6.5-3). 
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This is a first-order lag equation, which is more apparent if it is placed into 
standard form 
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where 
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τR is the residence time of the tank, important to reactor conversion.  The 
time constant τC (smaller than τR) characterizes the dynamics of 
composition change.  The group KCT is the gain for the effect of 
temperature on composition in the reactor.  The negative sign shows that 
an increase in operating temperature will reduce the exit concentration of 
reactant A (by way of increasing the reaction rate constant). 
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The steady state mole balance in (6.5-2) has significance beyond serving 
as a reference condition for deviation variables.  It also constrains the 
relationship between the tank composition and temperature (within the 
rate constant kr) at steady state.   
 
6.6 similarly approximating the energy balance 
We apply (6.4-2) to energy balance (6.2-3). 
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At the reference condition, (6.6-1) becomes 
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We subtract (6.6-2) from (6.6-1) and define deviation variables. 
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The reaction rate partial derivatives are given in (6.5-5) and (6.5-7).  To 
obtain the heat transfer rate partial derivatives, we combine the heat 
transfer expressions (6.2-4) through (6.2-7) with the coolant energy 
balance (6.2-10) to eliminate intermediate variable Tco. 
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The partial derivatives are 
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in which  
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and  
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The argument of the exponential function in (6.6-8) is the “number of 
transfer units”, used in models of heat exchangers (Incropera and DeWitt, 
Sec. 11.4).  We substitute (6.5-5), (6.5-7), (6.6-6), and (6.6-8) into 
linearized energy balance (6.6-3) to obtain another first order lag equation. 
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where  
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Once again, standard-form parameters have been defined.  The thermal 
time constant τT characterizes the dynamics of temperature change, and 
KTC and Kht are gains for composition and heat transfer disturbances. 
 
6.7 deriving transfer functions by Laplace transform and block diagram 
Laplace transforms may be performed on the mole balance (6.5-10) and 
the energy balance (6.6-10). 
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These equations must be combined to isolate the dependent variables T 
and CA.  First, we express them in a block diagram to show the 
dependencies more clearly.  System inputs are on the left, and outputs on 
the right.  Notice that both outputs depend on all three inputs. 
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Figure 6.7-1  Block diagram of stirred reactor 
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We isolate CA

′(s) either by eliminating T′(s) between (6.7-1) and (6.7-2), 
or by tracing the dependency through the block diagram: 
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After simplifying the individual transfer functions in (6.7-3), we recognize 
a second-order system 
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in which the coefficients in the characteristic equation are 
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We similarly isolate T′(s) from the equations or the diagram to find 
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From (6.7-4) and (6.7-7) we see that the material and energy balances 
combine to produce a second-order dependence for each output variable.  
The characteristic equation and poles are the same for both T and CA.  
Through (6.7-4) and (6.7-7) we can predict how T and CA will respond to 
particular disturbances. 
 
6.8 multiple steady-state operating conditions 
Before we consider transient response any further, though, we should look 
more carefully at the steady-state reference condition.  As in previous 
Lessons,  we think of the reference condition as some desired set of steady 
operating conditions.  Now, however, our reference state is described by 
nonlinear material and energy balances, (6.5-2) and (6.6-2), repeated here: 
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For some combinations of design (V), reaction system (kr, ΔHR, etc.), and 
operating inputs (CAir, Fcr, etc.), it is possible for three distinct pairs of 
reactor temperature Tr and composition CAr to satisfy (6.8-1) and (6.8-2).  
Marlin (App. C) illustrates this behavior by plotting the term of (6.8-2) 
that represents heat generation by reaction 
 

2
ArrR CVkHΔ−  (6.8-3) 

 
along with the heat flow and transfer terms 
 

( )( )rcirpcccrrpirp 1TTCFTCFTCF β−−ρ−ρ−ρ  (6.8-4) 
 
both versus reactor temperature Tr.  Any intersection of the two curves 
(point A, B, or C) satisfies (6.8-2).   
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The relative slopes of the curves are significant: at points A and C, an 
increase in Tr would exhibit less heat generation than heat transfer, tending 
to cool the reactor toward the reference condition.  At B, by contrast, an 
increase in Tr will tend to generate more heat than can be removed, so that 
reactor temperature will rise, moving toward condition C.  The conclusion 
is that reference states A and C are stable, and B is not: B is in balance, 
but a slight disturbance will cause an excursive transient toward either A 
or C. 
 
Our linearized dynamic models should capture this behavior in the vicinity 
of the reference state.  That is, the poles of (6.7-4) or (6.7-7) should show 
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negative real parts for conditions such as A and C, and positive real parts 
for B. 
 
Let us examine a specific case (in which the parameters are chosen more 
for illustration than realism): 
 
physical properties design and operating 

conditions 
reference conditions 

ρ= 850 kg m-3 
Cp = 3800 J kg-1 K-1 
ΔHR = -450 kJ mol-1 
E/R = 8200 K 
ko = 1100 m3 mol-1 s-1 

Uor = 438 W m-2 K-1 
Ao = 18 m2 
V = 0.785 m3 
F = 0.015 m3 s-1 
Tci = 300 K 

Tir = 330 K 
CAir = 2300 mol m-3 
Fcr = 0.008 m3 s-1 

 
From these parameters, three reference states are possible: 
steady reference output dynamic characteristics character of response 
Tr = 326.7 K, CAr = 2296 mol m-3 τ = 49.7 s, ξ = 1.001 stable (little reactant conversion), 

very slightly overdamped 
Tr = 443.7 K, CAr = 1335 mol m-3 τ2 = -978 s2 (better conversion) excursively 

unstable 
Tr = 578.5 K, CAr = 227 mol m-3 τ = 13.5 s, ξ = 1.72 stable (best conversion), 

overdamped 
 
Here our linearized models agree with the stability assessment from the 
nonlinear steady state balances.  We could not expect a reactor to stay, on 
its own, at the second condition.   
 
6.9 response of system to step disturbance 
Equations for second-order step response were given in Lesson 5.  For 
stable systems, it is instructive here to consider the long-term value of the 
step change, which is given by the magnitude of the step multiplied by the 
appropriate transfer function gain in (6.7-4) and (6.7-7).  For a step change 
ΔC in the inlet composition CAi, the long-term effects are 
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For a step change ΔT in the inlet temperature Ti, 
 

T)(TTK)(C
CR

2
'

CR

CT
2

'
A Δ

ττ
τ

=∞Δ
ττ

τ
=∞  (6.9-2) 

 
For a step change ΔF in the cooling water flow rate ΔFc, 
 

revised 2005 Mar 30  11 



Spring 2006 Process Dynamics, Operations, and Control  10.450 
 Lesson 6: Exothermic Tank Reactor 

FK)(TFKK)(C
CT

ht
2

'

CT

htCT
2

'
A Δ

ττ
τ

=∞Δ
ττ

τ
=∞  (6.9-3) 

 
Equations (6.11-1) through (6.11-3) predict steady-state operating 
conditions after a step input disturbance.  However, because these 
predictions are made with an approximate model -- a linear approximation 
valid only at the reference conditions CAr and Tr -- they are unlikely to 
satisfy the material and energy balances (6.2-1) and (6.2-3) applied at the 
new steady-state.  Therefore, if we use our approximate model as a basis 
for tuning a controller at a reference condition, we should be skeptical 
about our tuning if we must operate the process away from that reference. 
 
6.10 do the linearized models describe instability? 
We must not claim that our approximate model will describe the full path 
of a reactor transient.  However, we do feel that our prediction of the 
stability threshold by the poles of (6.7-4) and (6.7-7) can alert us that a 
contemplated operating condition might be troublesome.  If we can avoid 
the onset of instability, we need never describe an instability transient. 
 

CONTROL SCHEME 
 
6.11 step 1 - specify a control objective for the process 
Our control objective is to maintain the outlet temperature T and 
composition CA at constant values.  Especially we must be concerned with 
the possibility of runaway reaction. 
 
6.12 step 2 - assign variables in the dynamic system 
We seem to have two desired controlled variables (T and CA), two 
disturbances (Ti and CAi), and a single manipulated variable (Th).  We 
have not encountered a system with multiple outputs before.  It is clear 
from (6.7-4) and (6.7-7) that the manipulated variable affects both T and 
CA.  Furthermore, we know that we cannot set T and CA independently, 
because they are related through the material and energy balances.  
Therefore, we will attempt to control one of them - perhaps T, because it is 
easier to measure - intending to obtain satisfactory behavior of CA as a 
consequence. 
 
6.13 step 3 - PID (proportional-integral-derivative) control  
Proportional control reacts to the magnitude of the present error, and 
integral mode reacts to its persistence over time.  Integral mode removes 
offset in the controlled variable, but tends to make the closed loop less 
stable, as well as make the response sluggish.  We now address these 
concerns with the derivative mode. 
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where x*

co is the controller output and the controlled variable error, 
expressed in scaled variables, is 
 

**
sp

* yy −=ε  (6.13-2) 
 
Equation (6.13-1) describes the ideal PID (proportional-integral-
derivative) controller algorithm.  It adds the derivative mode to the 
proportional and integral modes we have seen before.   
 
Derivative mode is an early warning of error; by reacting to the change in 
the error signal, it can dictate a significant response from the manipulated 
variable before the error has grown sufficiently to evoke a similar 
response via proportional mode.  The influence of the derivative mode is 
set by the magnitude of the derivative time TD.  Increasing TD strengthens 
the controller response. 
 
We can express algorithm (6.13-1) in deviation variables. 
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The Laplace transform of (6.13-3) is  
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6.14 step 4 - choose set points and limits 
Both the set point and operating limits for temperature may depend on a 
number of considerations, including reaction kinetics (desired reaction 
rate), reaction equilibrium (possible conversion), the possibility of side-
products or degradation reactions, the vapor pressure of solvents, limits of 
construction materials, etc.  Because our process may be open-loop 
unstable, we ask whether control can stabilize it. 
 

EQUIPMENT 
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6.15 adjusting heat transfer with a valve 
Physically, the controller output dictates the opening of a valve that admits 
the cooling water to the heat exchanger.  The figure shows a cooling water 
supply header, a line to the heat exchanger, and another line to the cooling 
water return header. 
 

cooling water supply header

cooling water return

heat exchanger 
bundle in tank

lines to other 
users of CW

cooling water supply header

cooling water return

heat exchanger 
bundle in tank

lines to other 
users of CW

 
 
As in Lesson 5, we will represent our valve dynamics as “relatively fast” 
and expect that adding dynamic lags to the valve transfer function would 
have negligible influence on the closed loop behavior. 
 
6.16 control valve mechanism 
A valve is a variable flow resistance manipulated by some actuator 
mechanism.  In the sink, one turns the valve actuator by hand, which turns 
a threaded stem to raise and lower a plug with respect to a seat.  When the 
plug is seated, there is no opening for flow, and the hydraulic resistance 
coefficient is infinite (no flow for finite pressure difference).   
 
In a control valve, the most common actuator mechanism is a chamber in 
which air pressure on one side of a diaphragm opposes a spring on the 
other.  The position of the diaphragm determines the position of the valve 
stem, and thus the opening between plug and seat.  The schematic 
illustrates this concept (of course, real valve actuators will be more 
sophisticated). 
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air

 
 
Thus the controller output must vary the air pressure at the diaphragm.  
Conversion of controller output to air pressure requires another device 
between controller and valve, called a transducer.  The transducer supplies 
air to the valve in sufficient quantity to achieve a pressure proportional to 
the controller signal.  By convention, a zero controller output is 
represented to the valve as 3 psig; 100% output produces 15 psig. 
 
6.17 control valve failure mode 
Should the air supply fail, the spring will force the diaphragm to an 
extreme position.  In the valve schematic above, the valve would be fully 
open.  Thus this valve might be called fail-open, or air-to-close.  By a 
different arrangement of spring and air, an alternative fail-closed, or air-
to-open valve can be produced. 
 
In selecting the failure mode of a valve, the engineer considers how best to 
protect people and equipment under off-normal conditions.  General 
guidelines would include cooling water failing open, steam valves failing 
closed, reactor feed failing closed, vessel effluent failing open.  Of course, 
exceptions to these cases could be found, too. 
 
The failure mode of a valve determines the sign of its gain.  For example, 
suppose that we represent the combined valve and transducer by a transfer 
function between the controller output and the flow rate through the valve: 
 

)s(xK)s(F '
cov

' =  (6.17-1) 
 
For an air-to-open valve, the flow increases with controller output, so that 
the gain Kv is positive.  For an air-to-close valve, shown in the schematic, 
the flow decreases with controller output, so that the gain is negative. 
 
We write (6.17-1) in physical variables to show the bias term. 
 

(b v coF F K x 0− = − )  (6.17-2) 
 
For an air-to-open valve, the gain Kv is positive and the bias flow Fb is 
zero. 
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For an air-to-close valve, the gain is negative, and bias flow is the 
maximum flow. 
 

(max
co

FF 100% x
100%

= )−  (6.17-4) 

 
Equations (6.17-3 and 4) are suitable for use in simulator calculations. 
 
6.18 positive closed loop gain and the sense of the controller  
In these lessons, we have occasionally checked the sign of the gain in our 
dynamic systems.  Finding in Section 6.17 that an air-to-close valve 
necessarily has a negative gain motivates us to examine the gains in a 
closed feedback loop. 
 
As a basis, we want feedback to be negative.  That is, if the controlled 
variable becomes too large, we want the feedback loop to reduce it.  The 
alternative positive feedback will tend to increase the already-too-high 
controlled variable.  A common example of positive feedback occurs 
when the output of a loudspeaker is fed back into a microphone, amplified, 
and delivered to the speaker - cover your ears! 
 
Because we have defined error to be the set point less the controlled 
variable, a high controlled variable gives a negative error.  If this error is 
acted upon by a positive gain around the loop, the feedback to the 
controlled variable is negative.  Hence we want a positive loop gain. 
 
The loop gain KL is the gain component of the loop transfer function 
GL(s).  Thus, the loop gain is the product of the sensor, controller, valve, 
and manipulated variable (process) gains.   
 

mvcsL KKKKK =  (6.18-1) 
 
• Of these, the gain Ks for most sensors is positive - the mercury rises 

with temperature.   
• The process gain Km is determined by the process itself - in these 

lessons, it has typically been positive, such that an increase in 
manipulated variable causes an increase in the response variable.  
However, we might in principle run across an opposite case.   

• The sign of the valve gain Kv is a function of a safety analysis, as 
discussed in Section 6.17. 

• Because Km and Kv may be either positive or negative, and can be so 
for independent reasons, we must therefore reserve the ability to 
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choose the sign of the controller gain Kc.  This is done with the 
controller sense switch, which might be a physical switch on an analog 
controller, or an input value in software. 

 
6.19 ambiguity! 
The adjectives “direct-acting” and “reverse-acting” are used with a 
controller to indicate the position of the sense switch.  Alternative 
adjectives are “increase/increase” and “increase/decrease”.  However, the 
adjectives are not consistently used!  Hence, look at the controller 
carefully, and ensure that you know the algebraic sign of the gain. 
 

CLOSED LOOP BEHAVIOR 
 
6.20 closed loop transfer function 
From Lesson 5, we borrow the general closed loop block diagram.  
However, we add an additional, uncontrolled, output yu to represent the 
outlet composition.  The portion of Figure 6.20-1 labeled “process” is 
equivalent to Figure 6.7-1, but redrawn to reflect the algebraic 
manipulations of Section 6.7.   
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Figure 6.20-1  Block diagram for control of one of two outputs 
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Also from Lesson 5, the controlled variable is related to the inputs by 
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We specialize the nomenclature and the transfer functions for our stirred 
reactor case, using especially temperature model (6.7-7). 
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Motivated by Section 6.18, let us examine the loop gain: 
• The sensor gain Ks is positive for temperature measurement.   
• The process gain Km is given in (6.20-4).  For a stable process, τ2, τC, 

and Kht are all positive, but τT is negative.  Hence, Km is negative, 
implying that an increase in the heat exchanger coolant flow will lower 
the reactor operating temperature. 

• Because we wish to provide cooling water even in the event of an air 
supply failure, we choose an air-to-close valve.  In Section 6.19, we 
saw that such a valve featured a negative gain.     

• Because the product of the other three gain components is positive, our 
controller sense must be set to positive gain.  If the reactor is too cold, 

revised 2005 Mar 30  18 



Spring 2006 Process Dynamics, Operations, and Control  10.450 
 Lesson 6: Exothermic Tank Reactor 

T < Tsp and ε > 0.  Positive Kc directs the controller output to increase, 
closing the air-to-close valve, restricting the cooling water, and thus 
allowing T to rise. 

 
6.21 closed-loop behavior - laplace transform solution 
From the equations in Section 6.20, we can derive the transfer function for 
disturbances in the inlet temperature: 
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The closed loop characteristic equation is third order, because the integral 
mode has increased the process order by one.  Partial fraction expansion 
will show us that the step response will be the sum of three exponential 
terms (for 3 real roots) or an exponential oscillation (for 1 real and 2 
complex roots).  We could proceed as in Lesson 4, in which we calculated 
poles numerically and found the onset of oscillation, and then instability 
with increasing gain.  Here our tuning task would be more complicated, 
because we have three controller parameters to vary, instead of just the 
gain. 
 
The derivative mode affects the coefficients of the two higher order terms.  
Increasing D will increase the curvature of the characteristic function, 
which (other parameters unchanged) can increase the likelihood of three 
abscissa-crossings - thus three real roots, suppressing oscillation in the 
response. 
 
The integral mode affects the lower order terms.  Increasing TI will result 
ultimately in reducing the order of the characteristic equation, which will 
allow offset in the step response.  Increasing the controller gain Kc will 
reduce the transfer function gain (the coefficient in the numerator) and 
reduce the magnitude of the dynamic term coefficients in the denominator. 
 
6.22 Bode criterion for closed loop stability 
We invoke the Bode stability criterion, as we did in Lesson 4, with one 
important provision: the Bode criterion does not apply if the process is 
open-loop unstable.  Therefore, if we are attempting to operate at such a 
condition, we must use more advanced methods to determine the closed-
loop stability limits. 
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For stable open-loop conditions, we may apply the Bode criterion to the 
loop transfer function.  The amplitude ratio is the magnitude of the loop 
transfer function, which may be found as the product of the magnitudes of 
the component transfer functions.  Using a table of amplitude ratios, such 
as that of Marlin (2000), we find 
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Similarly, the phase angle is the sum of the component phase angles. 
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The derivative mode opposes the phase lag due to the integral mode and 
stabilizes the closed loop.  In the figure, the controller parameters are set 
to give P, PD, PI, and PID controllers at a stable open-loop condition, as 
described in Section 6.8.  Controllers using integral mode are shown with 
dashed lines; solid lines refer to P and PD controllers. 
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The effect of integral mode is to increase the amplitude ratio and increase 
the phase lag at low frequency.  Both these actions are generally 
destabilizing to a closed loop, although in this case, there is no crossover 
frequency in evidence (the phase lag never goes beyond -180º). The effect 
of derivative mode is to decrease the phase lag at high frequency.  This 
can often help push a crossover frequency to a higher value, at which the 
amplitude ratio will tend to be smaller.  In this way, derivative mode can 
help to stabilize a closed loop.   
 
In this process, perhaps the most significant contributor to stability is the 
presence of a “lead”, the positive phase angle represented by the middle 
term in (6.22-2).  This term arises from the manipulated variable transfer 
function (6.20-4), because coolant flow rate affects reactor temperature 
not only by heat transfer, but by the rate of exothermic reaction.  The 
numerator term in (6.20-4) affects the coefficients of the characteristic 
equation, and thus the poles that are possible.  This third-order process, at 
the reference condition we have chosen, seems to be intrinsically stable 
under closed loop control. 
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6.23 tuning the controller 
Given the process model, we may tune the controller by simulation, in 
which we vary the three parameters and assess the effects by comparing IE 
and IAE for the responses.  The simulation can be done by supplying the 
partial fraction expressions with numerically computed roots, or by 
returning to the differential equations for numerical solution, either in 
linearized or original nonlinear form. 
 
6.24 conclusion 
We encountered a more complicated process in this lesson, both because it 
required two coupled equations, and because reaction kinetics and heat 
transfer made them nonlinear.  We introduced a formal approximation 
process to make the model linear, and then were able to treat it with tools 
we had previously developed.  Even so, nonlinearity could not be escaped, 
because we found that the behavior of the approximate description 
depended on the reference conditions we chose.  Furthermore, we found 
that some conditions admitted multiple steady states.  All of this should 
inspire us to maintain a healthy skepticism toward our results. 
 
The positive news was that it is possible to maintain the process at an 
inherently unstable condition through feedback control.  We have further 
increased our feedback capabilities through the derivative mode, which 
complements proportional and integral modes to comprise the PID 
controller, widely used and justly respected in the chemical process 
industries. 
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