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7.0 context and direction 
Chemical processing plants are characterized by large time constants and 
time delays.  For control engineering, we can often approximate these 
high-order systems by the FODT (first-order-dead-time) model.  Dead 
time in a process increases the difficulty of controlling it.   
 

DYNAMIC SYSTEM BEHAVIOR 
 
7.1 big and slow - high-order overdamped systems 
We began our study of process control by considering a mixed tank.  
Applying a material or energy balance to a well-mixed tank produces a 
first-order lag system.  We subsequently combined two balances to 
produce a second-order system.  In one case, two material balances 
described storage of material in two tanks.  In another case, a single tank 
stored both material and energy.  Energy and material balances show that 
the tank causes a dynamic lag between input and output, because it takes 
time to adjust the amount of mass or energy distributed throughout the 
tank.  We might thus expect that more storage elements would lead to 
higher-order behavior, and require higher-order equations to describe 
them.   
 
The classic illustration of a high-order system is a set of n tanks in series: 
each tank feeds the next, and a change in the inlet stream composition CA0 
must propagate through multiple tanks to be felt at the output CAn.  The 
individual tank models are  
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They are combined by eliminating the interior stream variables to produce 
a single transfer function between input and output.   
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Let us illustrate high-order behavior and (7.1-2) by first imagining a single 
well-mixed overflow tank of time constant τ.  If we introduce a step 
increase in the inlet concentration, we will (by the well-mixed assumption) 
immediately detect a rise in the outlet stream – the familiar first-order lag 
response.  If we have instead two tanks in series, each half the volume of 
the original, we will detect a second-order, sigmoid response at the outlet.   
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Each tank has a smaller individual time constant, and their sum is the time 
constant τ of the original tank. If we continue to increase the number of 
tanks in the series, always maintaining the total volume, we observe a 
slower initial response with a faster rise around the time constant.  This 
behavior is shown in Figure 7.1-1.   
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Figure 7.1-1.  Step response for tanks in series; equal time constants 
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The step response shows that high-order systems have a longer start-up 
period before rising toward the final value.   
 
7.2 the FODT approximation to high-order step response 
There may be occasions when detailed dynamic analysis of a process is 
warranted.  Often, however, it is sufficient to obtain a simplified dynamic 
model that gives a reasonable approximation to the process behavior.  
Figure 7.1-1 indicates that high-order step responses might be represented 
as a first-order rise following a period of delay.  The dynamic model that 
would behave this way is called the FODT (first-order-dead-time) model; 
it turns out to be suitable for describing the dynamic response of many 
chemical processes. 
 
7.3 dead time is delay 
Before we examine the FODT model, we will look at dead time by itself.  
Chemical processes require that material be moved from one location to 
another: in conduits, on conveyer belts, through vessels.  The 
transportation time is finite; it implies a delay between the onset of a 
disturbance at one location and its observation at another.  This delay is 
often called dead time; it is familiar to anyone who has waited at the 
faucet for the hot water to arrive. 
 
Consider a pipe carrying a liquid.  A pulse of solute added at the entrance 
will be observed at the exit only after the solute is transported through the 
pipe.   
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The transit time depends on the liquid velocity and the length of the pipe.  
The figure indicates faithful transmission of the input signal x(t) from inlet 
to outlet, as if every particle in the pipe moved at the same velocity.  
However, in real chemical processes the solute pulse y(t) would become 
distorted through diffusive and dispersive effects.  Nonetheless, a simple 
description of transport using the average fluid velocity is often sufficient 
to represent dead time in a process: 
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==θ  (7.3-1) 

 
Thus the dead time is the residence time in the pipe. 
 
Consider again Figure 7.1-1 and the series of tanks.  If taken to the limit of 
an infinite number of tanks, each infinitesimally small, we finally obtain a 
pure delay, in which at time τ the full step disturbance appears at the 
outlet.   
 
7.4 dead time and lag are different 
In casual conversation, one might not distinguish between lag and delay; 
however, in process control these two terms have distinct meanings.  A lag 
process is illustrated by a mixed tank, and a delay (or dead time) process 
by a pipe.   
 
Table 7.4-1.  Comparison of lag and dead time processes 

 first-order lag pure dead time 
representative 

process 
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In the tank step response, the output lags behind the input, but there is no 
delay between input and a response at the output.  In the pipe, by contrast, 
the output is delayed.  
 
7.5 frequency response of a dead time process 
The sinusoidal input 
 

tsinA)t(x ω=  (7.5-1) 
 
is faithfully reproduced at the output of the dead time process, but will be 
delayed.  Thus the amplitude ratio is unity, and the phase lag depends on 
the input frequency and the dead time.  Inserting jω into the Laplace 
transform in Table 7.4-1, 
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Thus dead time delays a signal in an unbounded manner, but does not 
diminish its amplitude.  From what we recall of the Bode criterion for 
evaluating closed loop stability, we might speculate that dead time could 
be particularly significant.   
 
7.6 the FODT model 
To represent the dynamic behavior of a complex process as first order plus 
dead time is to say that the many storage elements and pipelines in the 
process can be represented by a single tank and pipe in series (the order 
does not matter).  The FODT model is a first order ODE with a delayed 
input: 
 

( θ−=+τ tKxy
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)  (7.6-1) 

 
The FODT time constant τ comes from the tank, and the dead time θ from 
the pipe.  Taking the Laplace transform of (7.6-1) 
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7.7 Bode plot of FODT 
With dead time, we finally see how the phase angle can become 
significant: although the first-order lag phase angle is limited to -90°, the 
dead time contribution to phase lag is unbounded.  In the plot, the dead 
time has been set equal to the time constant. 
 
If a FODT process is placed in a feedback loop with a controller, a 
crossover frequency will inevitably be found, and the controller settings 
will be limited by the onset of instability.. 
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Bode plot - first order plus dead time system
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7.8 identification - obtaining an FODT to represent a process  
Arriving at a suitable approximate model (both form and parameter 
values) is known as identifying a model.  Most often, the FODT 
approximation would be derived from an experimental test of the dynamic 
system.  For example, a step input xdata(t) would be contrived, and the 
response ydata(t) measured.  Then the experimental data would be 
compared with the FODT step response ymodel(t), and the parameters K, τ, 
and θ adjusted to achieve a satisfactory match.  The match might be done 
by eye; alternatively, a least-squares criterion could provide an objective 
comparison between different sets of parameter values.  Marlin (2000) 
describes further methods for obtaining parameter values from the data. 
 
If the step input can be maintained sufficiently long to see the response 
become virtually constant, the gain K is relatively easy to determine.  
However, the response variable remains subject to other disturbances, 
which may distort the experimental data through noise and confounding 
inputs.  Such confounding inputs may force a given step test to be short.  
Furthermore, in some systems it may be impossible to approximate a step 
input.  In others, it may be undesirable to force a system away from the 
desired operating condition for a lengthy period.  Thus other forms of 
input disturbance suitable for identifying a system model are discussed by 
Seborg et al (2004).  
 
Figure 7.8-1 shows experimental data for a system with negative gain.  
The noise in the response variable trace makes the choice of dead time 
somewhat uncertain.  Furthermore, the short duration of the run means 
that different combinations of gain and time constant can be used to fit the 
observed trace; a longer run would have distinguished these two 
parameters more clearly. 
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Figure 7.8-1  Experimental step response and FODT fit 
 
We make use of a process model in closed loop calculations.  For 
example, we have used the manipulated variable transfer function Gm(s) to 
compute the loop transfer function.  In an experimental test, however, we 
are likely to obtain Gm in combination with the sensor and valve transfer 
functions.  This is because manipulating the valve with the controller 
output in manual is the most common way of creating a step input in the 
manipulated variable.  Furthermore, we obtain the value of the response 
variable only by measuring it, usually with the installed sensor.  Hence the 
FODT model actually includes the behavior of valve and sensor, as well.  
Notice in Figure 7.8-1 that the input is not quite a step, but rather a rapid 
first-order response.  These dynamics become part of the ostensible 
process model. 
 
In Lesson 6 we encountered a process with underdamped behavior.  In 
such a case, it may be possible to identify a suitable second-order-dead-
time model, thus augmenting the more varied responses of second order 
with dead time.   We will not pursue this idea further in this lesson. 
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7.9 digital calculation of dead time 
Dead time is computed by defining arrays for the input and output 
variables.  The arrays represent the variation of the inputs and outputs over 
time.  The dead time is represented by a difference in the array index 
between input and output variables.  For example, suppose that the 
variables are computed every five seconds, so that x_input(i+1) 
represents the value of the input 5 s after that stored in x_input(i).  
Then a dead time of 20 s would require that a change in the input variable 
occurring at index value i not be introduced to the output variable array 
until the index reaches i+4.   
 
7.10 an example process with dead time 
Consider the blending tank we studied in Lesson 3; however, recognize 
that the composition sensor may be placed some distance from the tank, so 
that there is a delay between achieving a composition in the tank and 
presenting its value for measurement. 
 

F, CAi

F, CAo

volume V

Fc, CAc

F, CAi

F, CAo

volume V

Fc, CAc

 
 
The system model, adapted from Lesson 3, is 
 

)t(F
F

C)t(C)t(C
dt

)t(dC '
c

Ac'
Ai

'
Ao

'
Ao θ−+θ−=+τ  (7.10-1) 

 
where the time constant τ is given by the ratio of tank volume to 
volumetric flow, and the dead time θ by the ratio of the length of pipe 
between tank and sensor to the average velocity of the outlet stream in the 
pipe.  Notice that in this particularly simple case, we have derived the 
model from our understanding of the process, not experimental data. 
 
The responses to changes in either of the inputs C′

Ai or F′
c will resemble 

those computed in Lesson 3, except that they will be observed only after a 
time interval of θ has followed the occurrence of the input. 
 

CONTROL SCHEME 

revised 2006 Mar 29  8 



Spring 2006 Process Dynamics, Operations, and Control  10.450 
 Lesson 7: High Order Overdamped Processes 
 
7.11 the control scheme 
step 1 - specify a control objective for the process 
Our control objective is to maintain CA at set point CAs. 
 
step 2 - assign variables in the dynamic system 
The controlled variable is CA.  From (7.10-1) we see that the manipulated 
variable Fc affects the controlled variable through a transfer function that 
includes dead time.  The disturbance transfer function for input CAi 
includes dead time, as well.  For feedback control, that does not matter - 
we observe that a disturbance has occurred only when the controlled 
variable begins to deviate from set point.  (In other control schemes, 
however, we will be able to make use of measurements of the disturbance 
variable.  In this case, it will be useful to know the dead time for 
disturbances.) 
 
step 3 - PID (proportional-integral-derivative) controller algorithm  
Derivative mode can help to stabilize the loop.  However, we expect to 
find that dead time will force us to detune (that is, make less aggressive) 
the controller. 
 
step 4 - choose set points and limits 
The parameter values, also from Lesson 3, are 
 

V = 6 m3 
F =  0.02 m3 s-1 
τ = 300 s 
θ = 60 s 
Fcs = 10-4 m3 s-1 
CAis = 8 kg m-3 
CAos = 10 kg m-3 
CAc = 400 kg m-3 
 

We will suppose that CAi may vary between 4 and 10 around its reference 
value of 8 kg m-3.  Therefore, from the steady state material balance, Fc 
must be capable of varying between 0 and 2×10-4 m3 s-1 to maintain CA at 
set point. 
 

EQUIPMENT 
 
7.12 sensor transmitter range 
The sensor must respond to the controlled variable (as mercury rises in the 
glass), and its associated transducer or transmitter must convert this 
response to an input signal for the controller.  For old-generation 
pneumatic controllers, this would be an air pressure; for electronic 
controllers and computers, it is often transmitted as an electric current that 
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varies between 4 and 20 mA.  The controller will convert the current to a 
percentage of the maximum input.  Thus we assign to the sensor a gain 
with dimensions of 
 

mA
in%

iablevarcontrolledofunit
mA)(Ks =  (7.12-1) 

 
The magnitude of Ks depends on the sensitivity, or the range, of the 
sensor.  Increasing the sensitivity of the sensor will cause a larger signal to 
the controller for a given deviation in controlled variable.  An increase in 
sensitivity, and thus sensor gain, increases loop gain in the same way as 
increasing the controller gain.   
 
Some processes must employ multiple ranges.  For example, a process 
with a set point of 500°C would have a low sensitivity (wide range) for 
monitoring the controlled variable during start-up from ambient conditions 
and a higher sensitivity (narrow range) for normal operation near the set 
point.  Such an application might be done with multiple sensors, with 
variable sensitivity, or with multiple control loops, according to the 
particular case. 
 
7.13 valve saturation 
There is not unlimited power to manipulate a process: even though a 
control algorithm might calculate an output greater than 100%, this can 
direct the valve to be no more than fully open, or fully closed.  The control 
engineer must size equipment so that the manipulated variable is sufficient 
to exert a countervailing influence to the anticipated disturbances. 
 
For example, if the controlled variable is a reactor temperature and the 
manipulated variable is the flow of cooling water to the reactor jacket, the 
maximum flow rate must be sufficient to cool the reactor under the most 
unfavorable anticipated disturbance conditions.  Then the valve must be 
selected, along with other piping components, to supply this flow.  No 
controller tuning can compensate for a valve that is too small. 
 
7.14 proportional gain and proportional band 
We have worked with the gain of the controller, Kc.  An alternative 
convention is also used: the proportional band.  Proportional band is the 
inverse of the non-dimensional controller gain, multiplied by 100. 
 

CK
100PB =  (7.14-1) 

 
Thus a gain of 1 %out %in-1 would be equivalent to a proportional band of 
100.  Large proportional band implies low gain. 
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7.15 integral time and reset rate 
Just as proportional mode has an inverse convention, the integral time is sometimes replaced 
with the reset rate.  The reset rate is simply the reciprocal of the integral time, and has 
dimensions of repeats time-1.  Using a large reset rate is equivalent to a small integral time, 
implying aggressive integral mode control. 
 
7.16 reset windup in integral mode 
The integral mode integrates the error over time; a persistent error leads to 
a growing integral-mode contribution to the controller output.  In our 
definition of the standard PID algorithm, there is no limit to the growth of 
this contribution.  Hence under some circumstances the computed 
controller output could become significantly greater than 100%.  The 
valve would be no more than fully open (or closed) as described in Section 
7.13, but the controller output would be increasing.  If the error were 
finally reversed, requiring the valve direction to reverse, the controller 
would be unable to direct it to do so until the integral mode contribution 
had been reduced by persistent error of the opposite sign. 
 
Such a condition is called reset windup, and could occur under prolonged 
severe input step disturbances, or a fault in the loop (such as a mistakenly 
closed manual valve) that prevented the manipulated variable from 
affecting the controlled variable.  Controller devices and algorithms 
generally include windup protection to prevent the unbounded growth of 
the integral mode. 
 
7.17 protecting set point changes from derivative spikes 
The standard PID algorithm defined the derivative mode in terms of the 
time derivative of the error.  However, derivative mode need not be 
employed in response to set point changes, so the definition is changed to 
apply derivative only to changes in the controlled variable.  Thus the 
algorithm becomes 
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⎝

⎛
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t

0
D

I
cbias,coco dt

dyTdt
T
1Kxx  (7.17-1) 

 
Here y represents the controlled variable, and the sign in front of TD has 
become negative, because error is always defined as the difference 
between set point and controlled variable.   
 
Algorithm (7.17-1) is the basis of practical controller algorithms.  
However, for derivations and some illustrations we will still use the 
Laplace transform of original algorithm. 
 
7.18 filtering the derivative mode 
The derivative mode, by reacting to the rate of change of the controlled 
variable, is subject to noise.  Applying derivative mode to a noisy signal 
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can introduce disturbances by needless variation of the manipulated 
variable.  The effect of noise can be reduced by filtering the derivative 
mode; this is usually shown by altering the derivative-mode term in the 
PID algorithm: 
 

1sT
sT

D

D

+α
 (7.18-1) 

 
Equation (7.17-1) may be thought of as the transfer function that describes 
sending input ε(s) first through a differentiator TDs followed by a first-
order filter (αTDs+1)-1.  In the time domain, this would be represented as 
 

dt
dT

dt
dT Ddf

df
D

ε
=ε+

ε
α  (7.18-2) 

 
where the variable εdf is the differentiated, filtered error signal that is 
combined with the original error and the integrated error in the PID 
algorithm.  The filter parameter α is often set between 0.1 and 0.2.  If α 
were zero, εdf would be the unfiltered derivative of the error ε in the ideal 
PID algorithm. 
 

CLOSED LOOP BEHAVIOR 
 
7.19 closed loop transfer function 
The familiar closed loop diagram can be drawn, and the closed loop 
transfer function derived.  For the disturbance  
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In (7.19-1) we have omitted the dead time from the disturbance transfer 
function in the numerator because we (presume that we) have no 
independent measure of CAi and thus only know that a disturbance has 
occurred when we see the response in CA.  We proceed as before to 
resolve the fractions, and obtain 
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Here, we grind to a halt, because none of our Laplace transform 
experience has prepared us to deal with the exponential term in the 
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denominator.  It is possible to substitute a polynomial approximation 
(called a Padé approximation) for the exponential term, and thus obtain an 
approximate transfer function that can be inverted, but we will not do this. 
 
7.20 Bode criterion for closed loop stability 
Instead, let us examine the stability of the closed loop by the Bode 
criterion.  Extracting the loop transfer function from the denominator in 
(7.19-1) we obtain the frequency response. 
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From (7.20-2) we see that the crossover frequency depends on the system 
model parameters τ and θ, and it may be further influenced by controller 
parameters TI and TD.  These controller settings also influence the 
amplitude ratio, along with the controller gain Kc. 
 
Choosing sample process and controller parameters  
 

KsKmKv = 0.5 
τ = 3 min 
θ = 1 min 
TI = 10 min 
TD = 2 min 

 
the crossover frequency is computed to be 3.088 radians min-1 and the 
controller gain at instability to be 2.994.  The Bode plot for the loop 
transfer function is shown in Figure 7.20-1.  Amplitude ratios are plotted 
for gains below, at, and above the stability limit (which is indicated by a 
marker). 
 
Notice that the amplitude ratio becomes level at high frequencies, instead 
of dropping off, as we have previously seen.  This is because the 
decreasing amplitude of the first order process is balanced by the 
increasing amplitude of the derivative controller mode.  The derivative 
mode filter described in Section 7.18 would prevent this high derivative 
gain at high frequencies. 
 
The phase angle actually rises over some range of frequency, due to the 
contributions of the controller, but ultimately the process dead time 
dominates, and the phase angle crosses the -180º stability criterion. 
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Figure 7.20-1.  Bode plot for loop transfer function at gains 1, 3, and 5 
 
A numerical calculation of closed loop response to a tiny step disturbance 
is given in Figure 7.20-2.  The system is initially stable, but the 1% 
disturbance initiates a cycle of oscillation that increases in amplitude.  In a 
perfectly linear system, the amplitude would increase without bound.  In a 
practical closed loop, the valve output would oscillate between fully open 
and fully closed, and the process would move into regions of operation not 
well described by the model and parameters in use.  While not strictly 
unbounded, the practical system response is nonetheless undesirable, so 
that the linear stability analysis has indicated a controller setting to be 
avoided. 
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Figure 7.20-1.  Unstable response to small disturbance at gain of 3 
 
7.21 tuning the controller via correlations 
The Bode criterion has given us an estimate of the stability boundary; we 
must still decide where to set the controller.  We have previously tuned 
controllers by several methods: 

• stability preservation - adjusting gain to realize particular gain and 
phase margins 

• direct simulation with a process model to minimize integral 
measures of error, such as IE and IAE, for various inputs 

• direct simulation with a process model using less comprehensive 
criteria, such as minimizing time to return to less than 2% 
deviation. 

 
Now we introduce two correlations for setting controller parameters.  In 
each case, the method represents the process as an FODT and specifies 
controller settings as a function of the model parameters.  The correlations 
give different results because their authors had different ideas of what 
constituted “good control”.   
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Zeigler-Nichols 
Probably the best known, it actually comes in two flavors.  The first (open 
loop) defines controller parameters in terms of the FODT process 
parameters (p.347 in Marlin).  The second (closed loop) depends on 
knowing the controller gain that will push the closed loop to the point of 
instability (constant amplitude oscillation), if only proportional mode is 
used.  Controller parameters are then defined in terms of the gain and the 
frequency of the sustained oscillation (p.330 in Marlin).  The independent 
variables in these methods can be determined from an existing FODT 
model, or from empirical plant testing (careful with that instability test, 
however!) 
 
Ciancone 
This is Marlin’s recommendation.  Read Chapter 9 for the story of its 
development.  Read particularly Example 9.5 for a good illustration of its 
use.  In short, the correlation provides robust tuning for an FODT process 
(and thus for anything reasonably approximated by FODT).  The closed 
loop equations (FODT and PID controller) were solved numerically to 
predict controlled variable response to disturbance and set point steps.  
Controlled variable IAE was minimized by varying controller parameters 
Kc, Ti, and Td.  However, this optimization was broadened beyond a single 
operating case.  It accounted for model error and changes in operating 
conditions by computing IAE for multiple cases, in which model 
parameters were varied.  In addition, constraints were placed on variation 
in the manipulated variable.  The correlation is presented as graphical 
relations among nondimensional parameters. 
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The controller gain is normalized by the product of the gains in the 
remainder of the loop (recall that the product of the gains around the 
feedback loop is dimensionless).  The integral and derivative times are 
normalized by the sum of the FODT time constant and dead time.  The 
independent variable is the fraction dead time in the process.   
 
Other correlations could be used (many are available; Seborg et al (2004) 
give a good overview), but the general idea should be clear: first get 
knowledge of the process itself, such as a dynamic model and the values 
of its parameters, and use this knowledge to choose controller settings.  
The variety of results that can be obtained in practical systems is due 
partly to the richness of the mathematical form of the PID algorithm in a 
closed feedback loop, and partly to the approximate nature of our process 
models - the real process simply has more potential for complexity than 
our mathematical models can predict.  Marlin (2000) gives further 
discussion of the effects of error in process models. 
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7.22 conclusion 
We have asserted that an enormous variety of chemical processes may be 
represented by the FODT approximation.  With the FODT process we 
have introduced the crucial issue of dead time.  Dead time is one of the 
distinguishing features of chemical process control, and exerts strong 
influence on how well the process can be controlled. 
 
Having such a standard system model available allows the development of 
correlations for tuning controllers.  The correlations point out that good 
knowledge of the process is the basis for successful control.  We will find 
that as more detailed understanding of the process is obtained, more 
sophisticated control strategies can be employed.    
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