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chemical plant designs use heat integration to reduce energy costs 
Suppose you have a hot process stream that needs cooling.  Perhaps you could use a utility 
stream, such as cooling water.  The energy transferred to the cooling water would then be 
discarded to the plant environment (via cooling tower or river discharge).  Suppose, however, 
that you have another process stream that needs heating.  IF the desired enthalpy changes of the 
two process streams are similar, IF the temperature differences support practical heat transfer 
rates, IF there is no safety problem routing these streams through a common piece of equipment, 
IF the two streams are in reasonable proximity, etc., THEN it may pay to recover the energy of 
the hot stream into the cold one, and thus save utility costs. 
 
saving utility costs is good, but operation becomes more complicated 
We have given up flexibility by tying two process streams together; it may be that starting up, 
shutting down, or performing maintenance will affect larger portions of the plant.  Furthermore, 
operating disturbances that affect one process stream may now propagate into the other.  More 
complicated plant structures motivate more sophisticated process control to cope with these new 
problems. 
 
use steady-state process simulators for flowsheet development 
Codes such as Aspen Plus, Chemcad, and Hysys are routinely used to develop chemical process 
flowsheets.  They calculate the thermodynamic state of each stream in the flowsheet.  These 
stream properties must, of course, satisfy the steady-state material and energy balances.  To 
complete the calculations requires models for performance of the flowsheet equipment, as well 
as physical properties.   
 
We will not use these tools in this module, but we will remain mindful of how they would be 
used.  In what follows, therefore, we can anticipate (1) writing material and energy balances (2) 
describing the performance of equipment (3) using physical property data.    
 
we present an example of heat integration and classify the variables 
Consider the following heat recovery network, based on an example presented by McAvoy (2): 
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To rationalize this example, imagine that we care about all the exit temperatures – this would be 
the case if we were processing each stream separately in heat exchangers with utility streams.  
Thus T6, T8, and T9 are classified as controlled variables (system outputs that we wish to 
maintain at a target value).  If the primary purpose of the network is to cool stream 1, then mass 
flow W1 and inlet temperature T1 are regarded as determined by another process; for our purpose 
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they are disturbance variables (system inputs that we must accept as they come).  Similarly, T2 
and T3 are determined by the suppliers of these streams, so they are also disturbance variables.   
 
We cannot exert control over the outlet temperatures unless we have some inputs to use as 
manipulated variables; these must be W2 and W3.   Why should W2 and W3 be ours to 
manipulate and W1 not, if they are all received streams?   Perhaps flows W2 and W3 are drawn 
from some larger supply, so that our calling for more or less of these streams at any time does 
not badly affect either the source or the destination of these streams.  (If we should not be 
manipulating these streams, then we cannot expect to exert the control we desire on the outlet 
temperatures, and we had better seek another heat integration scheme.) 
 
There remain temperatures T4, T5, and T7, which cannot be directly manipulated, are not input 
disturbances, but are not to be controlled.  We classify these as intermediate variables – they 
depend on inputs, and they either affect outputs or are themselves uncontrolled outputs of the 
system.  Our shower process in Lecture Notes 1 and 2 was simple enough to have no 
intermediate variables, but we encounter them in most cases. 
 
we write material and energy balances for steady-state operation 
Wait.  We have been talking about disturbances and control and changing stream flow rates – 
how can we be content with a steady-state balance?   
 
At this stage of design, we are simply not ready to quantify transient behavior.  Our job is to 
specify a suitable reference operating condition and size the heat exchangers appropriately, and 
that requires a steady state description, such as we would have from a steady-state process 
simulator.  We will use the RGA (Relative Gain Array) and DC (Disturbance Cost) to examine 
the merits of various control loops we might consider, and a steady-state model will be sufficient 
for that. 
 
The steady state material balances are true, but not informative, so we shall omit them.  A 
steady-state energy balance on the cold stream in a heat exchanger will be  
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The enthalpy of the stream is calculated from a thermodynamic reference temperature Tref, and 
the heat capacity Cp may vary with temperature.  Q is the heat duty of the exchanger, supplied to 
stream W through the heat transfer surface.  Combining the inlet and outlet streams, 
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where the heat capacity has been averaged over the temperature interval.  For our purposes 
(learning about operability screening tools to be used in preliminary-stage design) we will make 
matters simple and assume that Cp does not vary with temperature. 
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Thus far we have energy balances and physical properties; we also need a performance model of 
the heat exchanger.  We will use 
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in which we will neglect how the overall coefficient U varies with operating conditions.  
 
the equations in summary 
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if we had been using a steady-state process simulator we would not see the equations 
Still, they would be something like those we have written.  The temperature dependence of 
physical properties would be accounted for, and perhaps the heat exchanger model would be 
more elaborate, but they would feature the combination of the-energy-must-balance and how- 
the-equipment-performs that we see above. 
 
remember, these are steady-state equations! 
In writing balances for the shower process, we set the accumulation terms to zero because that 
was a reasonable approximation to process behavior.  Here, we have done no such thing – we 
have set the accumulation terms to zero because we are looking only at steady state.    
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However, steady-state does not mean static!  Suppose we define a reference state for all the 
variables.  Of course these must satisfy the equation set.  Then we change one of the inputs, say 
temperature T1.  For some period of time following, our equation set will not apply, because the 
disturbance in T1 changes the accumulation of energy in the system and variables are changing in 
time.  Ultimately, however, we expect the system to settle down to a new steady state whose 
variables are more or less different from the reference values, because of the effect of variable 
T1.  This steady state would be described by (3-4) through (3-6). 
 
we use the equations for the design case, in which our objective is to choose the areas 
We want to find out how large the heat exchangers must be to operate at the reference condition, 
and what manipulated variable flow rates we should supply.  This means we specify system 
parameters like Cp and U, pin down disturbance variables at their reference values, and specify 
the output variables to describe the system performance that we want.  Then we calculate the 
required heat exchanger areas and manipulated variables.  Notice, however, that two of the 
intermediate variables must be specified, as well.  Notice the subscript “r”, which indicates the 
reference condition, or design case. 
 
design case 
specify:  
Cp1, Cp2, Cp3, U1, U2, U3 
W1r, T1r, T2r, T3r 
T4r, T5r, T6r, T8r, T9r 

calculate: 
A1, A2, A3 
Q1r, Q2r, Q3r 
W2r, W3r, T7r 

 
we use the equations for the rating case, in which our objective is to calculate outputs 
After arriving at a design, we are interested in how it operates under different conditions.  Now 
the heat exchanger areas are fixed; we specify all inputs and calculate intermediate and output 
variables.  In describing the rating case no subscript is used, because the flow and temperature 
variables can take any value that satisfies the energy balance and performance equations. 
 
rating case 
specify:  
Cp1, Cp2, Cp3, U1, U2, U3 
A1, A2, A3 
W1, W2, W3, T1, T2, T3 

calculate: 
Q1, Q2, Q3 
T4, T5, T6 
T7, T8, T9 

 
we calculate either steady-state case by specifying 15 quantities and calculating 9 
Ideally, we would solve the 9 equations for the 9 unknowns.  We can quickly eliminate the 3 heat 
duties, but we are then left with 6 nonlinear equations that are implicit in the temperatures.  It is 
unlikely, therefore, that we will be able to isolate all desired unknown variables.  Hence, our 
calculation method will have to be iterative.  We will consider two alternatives: 
 
In the design case, we know most of the temperatures (because we are specifying both inlet and 
outlet conditions), which makes it straightforward to calculate the areas.  Hence we can vary the 
two manipulated variables and other temperatures to seek a combination of areas that we like.  
An example is given in “HX network.xls”.  It is important to represent all three heat exchangers 
in the spreadsheet, so that all equations are simultaneously satisfied. 
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In the rating case, we are seeking intermediate and outlet temperatures.  We can arrange the 6 
nonlinear equations, which are implicit in our 6 unknown temperatures, to equal zero.  We can 
then use a numerical root-finding scheme to calculate the temperatures that satisfy the equations.  
We will discuss root-finding in further detail below. 
 
In summary, we can calculate steady-state performance as required, so that we can arrive at a 
design for our network.  Next, we must consider if the network will be operable. 
 
before we proceed, recall what we learned from the shower process 
Our intention is to use RGA and DC to screen the heat exchanger network for potential 
controllability problems.   Let us compare our plan with our experience from the shower: 
 

Shower HX network 
Compute reference conditions from steady-state equations 

The output variables T and F were 
explicitly calculated from 1 linear and 1 
nonlinear equation. 

The output variables are implicit within 6 nonlinear 
equations.  An iteration scheme is necessary to 
calculate the reference steady state.  The result will 
be numbers, not a mathematical expression that 
shows dependencies. 

Classify the variables 
2 CV, 2 DV, 2 MV. 
With DV and MV specified, we have 2 
equations to calculate CV. 

3 CV (T6, T8, T9), 4 DV (W1, T1, T2, T3), 2 MV (W2, 
W3), and 3 IV – intermediate variables – (T4, T5, T7).  
With DV and MV specified, we have 6 equations to 
eliminate IV and calculate CV. 

Derive a linear system approximation to the equation set: 
'
dd

'
mm

' xPxPy +=       ( or if scaled, *'
d

*
d

*'
m

*
m

*' xPxPy += ) 

Taylor series used to obtain analytical 
expressions for the elements in Pm and Pd.

We decline to exert the effort required to 
differentiate the 6 equations and solve for y’.  
Instead, we will calculate the elements in Pm and Pd 
by numerical differentiation.  However, we will 
forego the insight that a mathematical expression 
could convey.  

Obtain RGA and DC from Pm and Pd. 
RGA and DC were mathematical 
expressions, from which we could both 
infer system behavior and calculate 
specific cases. 

RGA and DC will be numbers.  We must calculate 
various cases and hope to infer system behavior. 

 
what we gain and lose by these numerical approximations 
We avoid all the algebra of writing Taylor series, but we get only a matrix of numbers.  With the 
analytical solution, we package the entire system behavior into a mathematical expression, which 
we can use to understand its behavior.  With the numerical procedure, we must run multiple 
cases, and then compare tables of numbers, to sense how the system will operate.   
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we must develop several tools before we can proceed with this plan 
If we start to get bogged down in details, it will help to remember the side-by-side comparison 
presented above.  These numerical methods are just more ways to accomplish the same steps we 
followed in our simpler shower problem. 
 
root-finding 
Let us think of our six equations as a nonlinear vector function F.  A valid steady-state is 
described by  
 

0F =  (3-7) 
 
Thus the root of F is the vector of 3 CV and 3 IV that satisfy the energy balances and 
performance equations at steady-state (for specified values of DV, MV, and parameters).  
Numerical root-finding is done by an algorithm that seeks to drive F to zero by varying values of 
the root.   
 

• guess root value xguess 
• calculate the function F at the guessed root F(xguess) 
• is F close enough to zero? 
• if so, declare xguess the root 
• if not, modify xguess in some way that depends on what was learned in calculating F and 

go around again 
 
This algorithm is easiest to visualize for scalar F and x, but applies equally to our vectors.  The 
trick is specifying the italicized part of the last step.  Various schemes are used – repeated 
bisection of the interval of x known to contain the root, aiming at the root by calculating the 
slope of F at each guessed value of the root, fitting lines or polynomials to the function and 
finding their roots as improved guesses – and with a little library work, we can find about them 
in detail.  For our purposes, we can use a routine developed by Prof. Beers for 10.34, and made 
available on the OpenCourseWare site (1).   
 
The end result is that although we cannot solve our equations for T6, T8, T9 in general, we can 
compute appropriate values for these CV in specific cases. 
 
numerical differentiation 
We can also obtain a numerical estimate of a derivative: 
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where δx should be small enough to approximate the slope of yi but not so small that numerical 
round-off errors dominate.  Each determination of yi in (3-8) is done by numerical root-finding. 
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linearization 
Any one of our controlled variables (call it yi) is related to the input (manipulated and 
disturbance) variables xm and xd through the nonlinear equation set F.  We use the Taylor series 
to approximate this relationship as 
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or in deviation variables 
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When we apply this general form to each controlled variable, we can collect them into the 
standard linear system form 
 

'
dd

'
mm

' xPxPy +=  (3-11) 

 
where we see that matrices Pm and Pd are ensembles of the Taylor series partial derivatives, 
evaluated at the reference condition.  Writing (3-11) specifically for the heat exchanger network, 
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Thus we assemble matrices Pm and Pd directly by calculating numerical derivatives with (3-8).   
 
putting it together to calculate the matrices 
For example, we calculate the root of nonlinear system F at W2 = W2r + δW2, with all other input 
variables at reference conditions.  Then we calculate the root for W2 = W2r - δW2, leaving the 
other inputs unchanged.  From these two steady-state conditions, we obtain the first column of 
matrix Pm.  The other column is obtained similarly by finding roots at W3 = W3r ± δW3, leaving 
W2 and the other inputs at the reference values.  Pd follows in a similar manner. 
 
scaling variables using matrix notation 
We express each vector of variables in terms of scaled variables, and then separate the scaling 
ranges into a separate matrix.  For example, 
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 Similar treatments are done for y′ and xd

′.  Substituting into the linear model, we find 
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where the scaling ranges for individual controlled variables in y are collected into S, and so forth.  
We then isolate y*′; on performing the indicated matrix multiplication, we obtain matrices Pm

* 
and Pd

*. 
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In Matlab, we should use left division instead of the matrix inverse: 
 

Pmstar = S\Pm*Sm;  % = inv(S)*Pm*Sm 
Pdstar = S\Pd*Sd;  % = inv(S)*Pd*Sd 

 
don’t get lost 
If you find yourself feeling bewildered by these various operations, return to the side-by-side 
comparison above and make sure that you understand the overall procedure for turning a 
nonlinear model into a linear system approximation.  Then review the tools again with the 
purpose of each step firmly in mind. 
 
we create a Matlab program to perform these calculations 
We base our calculations on Prof. Beers’ code reduced_Newton.m, which will calculate the 
vector of roots of a set of nonlinear algebraic equations.  reduced_Newton requires that we write 
a routine called calc_f.m to contain our six equations; given a vector of CV and IV values, calc_f 
returns the vector computed from the six equations.  If it returns zeroes, we know that the 
supplied vector was a root.  We write the main routine to set the reference conditions, calculate 
matrices Pm

* and Pd
*, and compute the RGA and DC. 

 
From our shower work, we recall 
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we do an example to calculate RGA 
Let us for convenience presume these are all unspecified organic liquid streams.  Let all the heat 
capacities be simply 2500 J kg-1 K-1 and all the heat transfer coefficients 250 W m-2 K-1.  Our 
design has led us to three identical heat exchangers of 117 m2.  The inlet streams are 
 
W1: 8.2 kg s-1  T1:250°C 
W2: 9.1 kg s-1  T2:136°C 
W3: 5.6 kg s-1  T3:100°C 
 
We calculate the corresponding intermediate and output variables 
 
T4: 196.2°C T6: 129.3°C 
T5: 159.8°C T8: 223.4°C 
T7: 144.7°C T9: 168.8°C 
 
Matrices Pm and Pd are 
 
Pm = 
   -0.5998   -3.9815 
   -0.2312   -9.3344 
   -2.9267   -4.2319 
 
 
Pd = 
    6.0495    0.1114    0.3487    0.5399 
    3.3765    0.7906    0.1344    0.0750 
    5.7393    0.3142    0.6031    0.0827 
 
where the units of the Pm elements, and the first column of  Pd elements, are K s kg-1.  The 
remaining elements of Pd are dimensionless. 
 
Actually, our first controllability problem has been visible for some time: there are only two 
manipulated variables to deploy against three desired controlled variables.  Hence we must let 
one of these remain uncontrolled.  We thus calculate RGA from the appropriate submatrix of Pm 
for three separate cases: 
 
control T6 and T8 
RGA = 
    1.1968   -0.1968 
   -0.1968    1.1968 
 
control T6 and T9 
RGA = 
   -0.2785    1.2785 
    1.2785   -0.2785 
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control T8 and T9 
RGA = 
   -0.0371    1.0371 
    1.0371   -0.0371 
 
The selection of which two variables to control may depend on other considerations – safety 
considerations, impact on the downstream processes, likelihood of disturbances affecting the 
various CV – but if there are no other compelling grounds, the RGA suggests that we pair T8 
with W3 and T9 with W2.  These two loops are predicted to show the least interaction; that is, 
adjustments in one loop should not strongly disturb the other. 
 

W1

W2 T2

T6T5T4T1

T8

T9 T7

E101 E102 E103

W3 T3

W1

W2 T2

T6T5T4T1

T8

T9 T7

E101 E102 E103

W3 T3

 
 
Notice that each RGA shows (by negative elements) one pairing to be unstable.  It would require 
dynamic simulation to explore this quantitatively, but we can see the outlines of the behavior by 
imagining the effects of a step disturbance in one input.  For example, suppose that we pair T8 
with W2 and T9 with W3.   
 

W1

W2 T2

T6T5T4T1

T8

T9 T7

E101 E102 E103

W3 T3

W1

W2 T2

T6T5T4T1

T8

T9 T7

E101 E102 E103

W3 T3

 

NOT RECOMMENDED

 
 
We imagine an initial steady-state at the reference conditions, and we disturb this by a small step 
increase in temperature T2.  This will increase outlet temperature T9.  The controller tries to 
counter an increase in T9 by increasing W3, so that stream W1 will approach HX102 cooler.  
Increasing W3, however, also tends to reduce T8.  The T8 controller tries to increase T8 by 
heating the W1 stream approaching HX103.  It does this by decreasing W2.  Decreasing W2, 
however, tends to increase outlet temperature T9, thus reinforcing the initial disturbance.  The 
likely outcome is maximum W3 and minimum W2, far from the desired reference condition. 
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we continue the example to compute DC 
If we were designing this process, of course, we would find out about other considerations 
besides the RGA, as well as the information needed to set suitable scaling ranges for all our 
variables.  Because our purpose is to learn screening tools, however, we are entitled to make 
some simplifying assumptions about these details.  For example, we will assume that all 
temperatures are scaled to ±10ºC around the reference condition and flows are scaled between 
zero and twice the reference value.   With these simple scaling ranges, we calculate the 
dimensionless matrices Pm

* and Pd
*  

 
Pmstar = 
   -0.5458   -2.2296 
   -0.2104   -5.2273 
   -2.6633   -2.3699 
 
Pdstar = 
    4.9606    0.1114    0.3487    0.5399 
    2.7687    0.7906    0.1344    0.0750 
    4.7062    0.3142    0.6031    0.0827 
 
For further calculations, we omit the first row of each matrix, because we have chosen to control 
T8 and T9, and their dependency is given by rows 2 and 3. 
 
We calculate DC as a function of the disturbance vector xd

*′.  We check cases in which flow W1 
varies from 50% to 150% of its reference value.  That is, W1

*′ takes values of -0.25, 0, and 0.25.  
Each temperature varies a full ±10ºC, so that each scaled deviation variable takes values of -0.5, 
0, and 0.5.  This means 81 calculations of DC.  We are concerned with the largest values: 
 

DC W1*’ T1*’ T2*’ T3*’ W2*’ W3*’ 
    0.4706   -0.2500         0   -0.5000   -0.5000   -0.4510   -0.1343 
    0.4706    0.2500         0    0.5000    0.5000    0.4510    0.1343 
    0.4784   -0.2500   -0.5000   -0.5000         0   -0.4329   -0.2035 
    0.4784    0.2500    0.5000    0.5000         0    0.4329    0.2035 
    0.4898   -0.2500   -0.5000   -0.5000   -0.5000   -0.4424   -0.2103 
    0.4898    0.2500    0.5000    0.5000    0.5000    0.4424    0.2103 
 
The maximum occurs symmetrically: when the flow and all temperatures decrease, or increase.  
Notice that both W2*′ and W3*′ are below their extreme values (±0.5) so that we have sufficient 
MV capacity to overcome the anticipated disturbances. 
 
before we contemplated heat recovery, we would have controlled all three temperatures 
We should not give up control too easily.  The problem at present is that we have two MV for 
three CV.  Here are two schemes for creating another MV: 
 
adjustable bypass stream 
As in Seider et al (3), we divert some of stream W3 past HX103.  We now can manipulate W2, 
W3, and the bypass fraction φ, so we can control all three variables.  However, because we are 
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removing part of W3 from being heated, we may require larger heat exchangers to produce the 
desired output temperatures.  Thus our new operating capability comes at a capital cost. 
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T9
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T9
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E101 E102 E103

W3 T3

φW3
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trim heat exchanger 
We do part of our heating with a new heat exchanger, using a plant utility heating fluid.  We now 
can manipulate W2, W3, and the utility flow Wu, so we can control all three variables.   Again, 
our new operating capability comes at a capital cost.  In this case, however, we may be able to 
reduce the other heat exchanger sizes somewhat. 
 

W1
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by now, we know the drill for analyzing these alternatives 
The first step is to update the process model to reflect the process changes.  For the bypass 
scheme, we must write M&E balances over the mixing junction.  For the trim HX scheme, we 
need energy balances and a performance equation for the new heat exchanger. 
 
We review our variable classification – CV is the same, but each scheme has a new MV and 
some new IV, as well.  For simplicity (we have enough complication) we shall ignore any new 
DV that would be introduced, such as T10.   
 
We calculate new reference conditions – that is, a new design.  Our original input and output 
specifications for the reference still apply, of course, but we must choose a new MV reference in 
each case.  That specification will affect the other heat exchanger sizes.  We will use the DC, 
calculated after the fact, to evaluate whether our design (bypass fraction, trim heat exchanger 
size) has the capability to overcome disturbances. 
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We rewrite f_calc.m and update the main program as needed to calculate the linear system 
matrices. 
 
We calculate the RGA for each scheme to guide us in pairing MV and CV.  We calculate DC, 
and may have to adapt the design if DC indicates that we cannot compensate for disturbances 
with the reference bypass flow, or trim HX size, that we chose. 
 
how the story ends 
What do you find? 
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nomenclature 
Cp liquid specific heat 
W mass flow rate 
Pd matrix of gain coefficients for the disturbance variables 
Pm matrix of gain coefficients for the manipulated variables 
Q heat duty of a heat exchanger 
T temperature 
Tin inlet temperature for flowing stream 
Tout outlet temperature for flowing stream 
Tref thermodynamic reference temperature for enthalpy 
U overall coefficient of heat transfer for a heat exchanger 
xd vector of input variables into the system, the disturbance variables 
xm vector of input variables into the system, the manipulated variables 
y vector of output variables from the system, the controlled variables 
 
abbreviations 
CV “controlled variable”, a system output that we wish to maintain at a set point value 
DC “disturbance cost” 
DV “disturbance variable”, a system input that we have no influence over 
MV “manipulated variable”, a system input that we may adjust for our purposes 
RGA “relative gain array” 
 
subscripts 
cold colder stream in a heat exchanger 
hot hotter stream in a heat exchanger 
r a reference operating condition around which we derive a linear approximation 
 
superscripts 
′ indicates a deviation variable; i.e., the physical variable minus a reference value 
* indicates a scaled variable; i.e., variable has been divided by its operating range  


