
10.626 Electrochemical Energy Systems 
Spring 2014 MIT, M. Z. Bazant 

Midterm Exam 

Instructions. This is a take-home, open-book exam due in Late exams will 
not be accepted. You may consult any books, handouts, or online material listed on the

 syllabus, but you must work independently, without consulting any other person. 

1.	 Discharge of a Reaction-Limited Battery. A battery has constant open circuit voltage 
VO, constant internal series resistance Rint, and variable Faradaic resistance at one electrode, 
given by the symmetric Butler-Volmer equation  	  

−eη/2kT − eeη/2kTI = I0 e 

Derive and sketch the voltage versus current, V (I), for battery discharge at constant current. 

******************************* SOLUTION ********************************* 
We begin with 

V	 = VO − ηint + ηc − ηa (1) 

where ηint is the loss from the internal resistance and ηa,c is the activation loss from the 
Faradaic reactions at the cathode and anode. We know that the loss from internal resistance 
is given by 

ηint = IRint,	 (2) 

and the reaction loss, ηact, is given.   	  
−eηact/2kT − e eηact/2kTI = I0 e	 = −2I0 sinh (eηact/2kT )  (3)    

ηact = − 
2kT 
e 

sinh−1 I 
2I0

. (4) 

Note that way we have written the current relation is positive when net reduction is occurring. 
Thus, for current defined as positive during discharge, we are describing the cathode with 
this relation. We would introduce a sign change to describe the current at the anode where 
net oxidation is occurring. For simplicity, we assume the relation applies to the cathode and 
assume no losses at the anode. Thus,   

V = VO − IRint − 
2kT 
e 

sinh−1 I 
2I0

, (5) 

which is sketched in Figure 1. 
***************************************************************************** 

2.	 Voltage Hysteresis in a Li-ion Battery. The homogeneous free energy per site of a Li­
ion battery cathode at filling fraction x is given by the regular solution model. The enthalpy 
of mixing is positive h0 > 0, and the temperature is below the critical temperature for phase 
separation. Neglect the interfacial tension between phases and finite size effects. Assume that 
nucleation is not possible. The anode and electrolyte remain at constant chemical potentials, 
and the open circuit voltage is V 0 at half filling of the cathode. 
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Figure 1: Sketch of I-V curve for P1. The dotted green line represents the open circuit voltage. 

(a) Write down and plot the open circuit voltage versus	 mean filling fraction x, for  both  
homogeneous and phase-separated states. 

******************************* SOLUTION ********************************* 
Keeping the anode and electrolyte at constant chemical potential, the battery voltage is 
given by the chemical potential of the reduced state in the cathode, μ, 

μ 
V = VO − .	 (6) 

e 
We begin with the regular solution model as a function of the local concentration, non­
dimensionalized to the max concentration, c 

c 
μh(c) =  kT log +Ωa(1 − 2c).	 (7)

1 − c  

Thus, for a homogeneously filling cathode, c = x, μ = μh(x), and  

μh(x) 
V = VO − (homogeneously filling).	 (8) 

e 
This is plotted in Figure 2a. 
In the phase separating state, we accept two different responses. First, at true equilib­
rium, whenever the system is between the two free energy minima, it should be in the 
free energy minimum – the phase separated state. The two free energy minima occur 
at the “binodal”, which we will refer to as xb,± for the upper and lower spinodal points. 
Because of the symmetry in our free energy model, we can solve for these points by 
setting μh(c) = 0 and picking the solutions near 0 and 1 (i.e. c = 0� .5), which can be 
solved numerically.  

VO x ∈ [xb,− , xb,+]
V = .	 (9)

μh(x) else  

This is plotted in Figure 2b.  
A second acceptable response follows: If a (very small) finite current is assumed without  
nucleation, phase separation will occur at the spinodal, which occurs when g"" (c) = 0  or   
μ"
h(c) = 0.   

μ"
h(c) =  kT 

1
+ 

1 − 2Ωa.	 (10) 
c	 1 − c 
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(a) Homogeneous cathode volt- (b) Equilibrium phase separat­
age. ing cathode voltage. 

Figure 2: Voltage of homogeneous and phase separating cathodes. 

Thus, denoting the lower and upper spinodal homogeneous compositions as xs− and xs+, 
they are given by 

xs,± = 0.5 1 ± 1 − 2/Ω0a (11) 

where Ω0a = Ωa/kT . After phase separation, because our model for the free energy is 
symmetric around c = 0.5, the chemical potential will be 0 until the filling fraction 
reaches the other free energy minimum and returns to a homogeneous state. Again 
because the symmetry in our model for the free energy, we can solve for this point by 
setting μh(c) = 0, which can be solved numerically. We will denote these two limits 
xb,±. Thus, with spinodal phase separation, there will be different voltages when filling 
(discharging) or emptying (charging) the cathode. For filling, 

μh(x) else  

V = 
VO x ∈ [xs,−, xb,+] 
μh(x) else  

. (12) 

And for emptying, 

V = 
VO x ∈ [xb,−, xs,+] 

. (13) 

These are plotted in Figures 3a and 3b.  

(a) Phase separating cathode (b) Phase separating cathode 
voltage upon filling (discharge). voltage upon emptying (charge). 

Figure 3: Voltage of phase separating cathodes assuming very slow (dis)charge currents. 

***************************************************************************** 

3

( )

{

{



    

(b) On this plot, also sketch a closed curve to represent slow cyclic voltammetry, where the 
voltage is swept very slowly back and forth between large and small values. Explain why 
there is hysteresis, i.e. different curves for discharging and charging. 

******************************* SOLUTION ********************************* 
A representative CV curve for very slow scan rates involves following the curves in 
Figures 3a and 3b with some modifications. As the voltage is lowered from some large 
value, the cathode will be nearly empty, and the voltage will track the left part of 
Figure 3a. Then, when the spinodal is reached, because we are linearly sweeping the 
voltage, the filling fraction will rapidly go from the low spinodal limit to the intersection 
of the homogeneous curve at high filling fraction and the current applied voltage. In 
reverse (starting at low voltages and high filling fractions), the opposite occurs. The 
voltage will initially track Figure 3b as the cathode empties, then when the spinodal is 
reached, the cathode will quickly empty until it reaches the intersection at low filling 
fractions. This is depicted in Figure 4. 

Figure 4: Slow CV scan of a singe particle with phase transformations by nucleation. 

***************************************************************************** 
(c) Derive a formula for the “voltage gap” between charging and discharging plateaus in the 

limit of zero current. 

******************************* SOLUTION ********************************* 
The voltage gap is related to the difference in chemical potentials at the lower and upper 
spinodals. Thus, nondimensionlizing by the thermal voltage/energy 

ΔV0gap = μ0h(xs,−) − μ0h(xs,+)	 (14)  	  
= 2  Ω0 1 − 

2 − 2 tanh−1 1 − 
2 

.	 (15)0	 0Ω	 Ω 

***************************************************************************** 

3.	 Hydrogen-Bromine Flow Battery: Water Electrochemistry. During discharge, the 
battery converts hydrogen gas (H2) and liquid bromine (Br2) to hydrobromic acid (HBr). 
The half-cell reactions are 

−anode: H2 → 2H+ + 2e EΘ = 0  

cathode: Br2 + 2e − → 2Br− EΘ = 1.087V 

The electrolyte is 1M HBr(aq)  with  1M  Br2(aq) added near the cathode and 1 atm H2 gas 
at the anode, at room temperature. 
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(a) How does the cell voltage vary with pH? 

******************************* SOLUTION ********************************* 
We will denote the reactions as anode = 1, cathode = 2, oxygen evolution = 3. The 
Nernst equation for each reaction requires (assuming room temperature, taken from 
class, and given in Volts) 

E1 = −0.06 pH 
E2 = 1.087 
E3 = 1.229 − 0.06 pH. 

Thus, the voltage is Ec − Ea = E2 − E1 = 1.087 + 0.06 pH, 
***************************************************************************** 

(b) Make a Pourbaix diagram for the half-cell reactions,	 as well as the oxygen evolution 
reaction (i.e. electrolysis, or water splitting). 

******************************* SOLUTION ********************************* 
We plot the above equations in Figure 5. 

Figure 5: Pourbaix diagram for HBr Flow Battery. 

***************************************************************************** 
(c) What is the upper bound for pH to avoid oxygen evolution at the cathode near open 

circuit conditions? 

******************************* SOLUTION ********************************* 
Oxygen evolution will occur whenever an electrode potential lies above the E3 curve. 
Near open circuit conditions, this only occurs when E2 > E3, or  pH  > 2.367. 
***************************************************************************** 

(d) What is the upper bound for cathodic overpotential to avoid oxygen evolution during 
battery recharging? 

******************************* SOLUTION ********************************* 
When charging, net oxidiation is occurring at the cathode, so the electrode potential 
there is higher than the equilibrium curves. In order to drive reaction 2 in the oxidation 
direction, the electrode potential, Ec must be above E2. Similarly, for the oxygen to be 
evolved, the Ec must be above E3.  Thus we require  that  E2 < Ec < E3. Noting that 
the overpotential for the bromine reaction is ηc = Ec − E2 < E3 − E2 = 0.142 − 0.06 pH. 
Because we begin with 1M HBr, we can assume that the pH is initially zero, leading to 
0.142 V maximum overpotential. 
***************************************************************************** 
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4.	 Hydrogen-Bromine Flow Battery: Polybromide complexes. In hydrobromic acid, 
bromine can form tribromide and pentabromide ion complexes 

Br2 + Br− → Br− K3 = 16.73 

2Br2 + Br− → Br− K5 = 37.75 

where K3 and K5 are the equilibrium constants (Molar). Assume room temperature, dilute 
solution approximations (activity = molar concentration) and hydrogen gas at 1 atm. 

(a) What is the equilibrium constant of the second complexation reaction,  

Br− + Br2 → Br− K =? 3 5 

******************************* SOLUTION ********************************* 
When in equilibrium, 

eq eq eqa = K3aBr2 
a	 (16)

Br− Br− 
3 

eq eqa = K5(a )2 a	 (17)Br− Br2 Br− . 
5 

The equilibrium constant of the given reaction is, by definition, 
eqa
Br− 

K = 5 
eq	 (18)eqa

Br− aBr2 
3 
eq eqK5(a )2aBr2 Br− 

= eq eq	 (19)
K3(a )2aBr2 Br− 

K5 37.7 
= = ≈ 2.26.	 (20)

K3 16.7 

***************************************************************************** 
(b) What are the standard potentials of bromine reduction to the polybromide complexes? 

3Br2 + 2e − → 2Br− EΘ =?3 3 

5Br2 + 2e − → 2Br− EΘ =?5 5 

******************************* SOLUTION ********************************* 
The standard potential is obtained by using the Nernst equation. ⎛ ⎞ 

3 2kT a aBr2 e
E3 = EΘ + ln ⎝ ⎠	 (21)3 22e a

Br− 
3 	  
3 2kT a aBr2 e 

= EΘ + ln	 (22)3 2e (K3aBr2 aBr− )2

kT kT aBr2 a
2 
e = EΘ − ln K3 + ln .	 (23)3 2e 2e a

Br− 

Now, we note that we can relate the last term to the simple Bromine reduction reaction 
from P3, which we will now denote as reaction B 

kT aBr2 ae 
2 

EB = EΘ ln .	 (24)B + 22e a
Br− 
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If these reactions are both in equilibrium at the same electrode, there is only one “metal” 
potential, so E3 = EB = E, and (in Volts) 

E = EΘ 
3 − 

kT 
e 

ln K3 + (E − EΘ 
B ) (25) 

EΘ 
3 = 

kT 
e 

ln K3 + EΘ 
B = 1.087 + 0.026 ln 16.7 = 1.160. (26) 

Similarly, ⎛ ⎞ 

E = EΘ 
5 + 

kT 
2e 

ln ⎝ a
5 
Br2 

a2 
e 

a2 
Br− 

5 

⎠ = EΘ 
5 − 

kT 
e 

ln K5 + 
kT 
2e 

ln 
aBr2 a

2 
e 

a2 
Br− 

(27) 

EΘ = 
kT 

ln K5 + EΘ (28)B = 1.181.5 e 

***************************************************************************** 
(c) What are the concentrations of Br − 

3 and Br − 
5 in equilibrium with a reservoir of 1M HBr  

+ 1M Br2? Can this equilibrium ever be reached? 

******************************* SOLUTION ********************************* 
Using the relations from part (a), 

eq eq eqa = K3a a = K3 = 16.7 M (29)Br2 Br−Br− 
3 

eq eqa = K5(a )2 a = K5 = 37.7 M, (30)Br− Br2 Br− 
5 

which cannot be achieved because these values exceed the solubility limits. 
***************************************************************************** 

(d) If instead the total concentration of bromine (in all forms: Br2, Br− 
3 , Br  − 

5 ) is fixed at   
the initial Br2 concentration of 1M (prior to complexation reactions) and the system 
equilibrates in contact with a reservoir of 1M HBr, what is the open circuit voltage? 

******************************* SOLUTION ********************************* 
First we note that the first two given species each have one equivalent of Br2, whereas  

−Br5 contains 2 equivalents of Br2. Fixing the total concentration of Br2 and using that 
to obtain the OCV, we are also in equilibrium 

cBr2 + c + 2c = 1 (31)Br− Br− 
3 5 

aBr2 + a + 2a = 1 (32)Br− Br− 
3 5 

aBr2 (1 + K3aBr− + 2K5aBr2 aBr− ) = 1 (33) 
aBr2 (1 + K3 + 2K5aBr2 ) = 1  (aBr− = 1 from reservoir) (34) 

22K5a + (1 +  K3) aBr2 − 1 = 0 (35) Br2  −(1 + K3) + (1 + K3)2 + 8K5 
aBr2 = = 0.047. (36)

4K5 

Then, assuming unit activity for electrons, we can use the Nernst equation to determine 
the OCV, 

VO = 1.087 + 
kT 
2e 

ln 
aBr2 a

2 
e 

a2 
Br− 

(37) 

kT 
= 1.087 + 

2e 
ln (aBr2 ) (38) 

= 1.047 V, (39) 
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which demonstrates that “occupying” some of the Br2 via the complexes, while keeping 
the Br− fixed reduces the OCV. 
***************************************************************************** 

(e) Extra credit: If the total concentrations of all forms of bromine (Br2, Br−, Br−) and  3 5 
of bromide (Br−, Br−, Br−) are each fixed at 1M (for an initial solution of 1M Br2 +3 5 
1M HBr, prior to complexation reactions) and allowed to reach equilibrium in a closed 
system (no reservoir), what is the open circuit voltage? 

******************************* SOLUTION ********************************* 
Here, rather than having aBr− = 1,  we  have  that  

+ a + a = 1 (40)aBr− Br− Br− 
3 5 

2 aBr− + K3aBr− aBr2 + K5aBr2 aBr− = 1 (41) 

and from the constraint on bromine, 

2 aBr2 + K3aBr− aBr2 + 2K5aBr2 aBr− = 1. (42) 

These two equations can be solved numerically to obtain 

aBr2 = 0.12 aBr− = 0.28. (43) 

Thus, 

0.12 
VO = 1.087 + 0.013 ln = 1.093 V, (44)

0.282 

which is quite close to the standard potential because both Br2 and Br− concentrations 
were reduced. 
***************************************************************************** 
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