
Intensities of the Reflections
With the help of Braggs law and the Ewald construction, we can 
calculate the place of a reflection on the detector, provided we know 
the unit cell dimensions. Indeed, the position of a spot is determined 
alone by the metric symmetry of the unit cell. The intensity of a spot, 
however, depends on the contents of the unit cell (and, of course, on 
exposure time, crystal size, etc.). 

Reflections are weakened by the radius of the atoms (atomic form
factor) and the thermal motion of the atoms (temperature factor U). 
Both these effects are stronger at high resolution.
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Structure Factors

Every atom in the unit cell contributes to every reflection according to 
its chemical nature and its relative position. Owing to this shift in 
position relative to the other atoms, the photons contributed by each 
atom in the unit cell have a phase shift relative to those from other 
atoms.
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Structure Factors
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This makes the structure factor a complex number:
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Every atom i in the unit cell contributes to every structure factor F(hkl)
(that is reflection) according to its position in the cell and its chemical 
nature (different values for fi !):
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Complex Numbers and the Argand Plane
In general: Complex numbers have both real and imaginary components:
They have the general form x = a + ib, where            .1−=i
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Euler’s equation gives a different perspective for 
complex numbers:
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functions:                 and
in a Taylor’s series about α = 0 and matching the 
expressions term for term.
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Another check is that both expressions obey the same differential equation: 
y’ = iy.
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The expression       is apparently a complex 
number represented by a vector of unit 
length and angle α in the complex plane.
The expression         is a complex number 
of magnitude (length) r and angle α.
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Complex Numbers and the Argand Plane
A given complex number may be specified by either its real and I maginary
components (a and b) or its magnitude and phase (r and α), with the 
following relationships between them:
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Structure factors are complex quantities. If the magnitude of a 
particular reflection is measured but the phase has not been determined yet, 
the possible values of that structure factor can be represented by a circle of 
radius       in the complex plane.
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Structure Factors
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Electron Density
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The electron density at every given place in the unit cell (real space) can be 
calculated from the equation above. 

Note that xi, yi, zi in the structure factor equation refer to atomic coordinates, 
while x, y, z in the electron density equation refer to arbitrary places 
anywhere in the unit cell. 



Electron Density
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It is sufficient to calculate the electron density at 
a number of grid points within the unit cell and 
extrapolate between the points.

0.9 Å

1.7 Å

Courtesy of George M. Sheldrick. Used with permission.



Calculating Electron Density
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To make this equation work we need the volume of the unit cell (easy), a 
dataset with the intensities for h, k and l (also easy) and the phase of every 
structure factor (not quite so easy).

We can measure the intensities and determine the unit cell from the 
locations of the reflections, but it is very difficult to actually measure the 
relative phase of the reflections. This is known as the “crystallographic 
phase problem”.



The Phase Problem: Fourier Synthesis

Let’s imagine a one dimensional crystal 
with a three-atomic molecule in the unit 
cell: two carbons and one oxygen. The 
electron density in this unit cell looks 
like this:

Try to represent this function in terms of 
sine waves. The first sine wave has a 
frequency of 2, that is there are two 
repeats of the wave across the unit cell. 
One peak represents the oxygen, and 
the other the two carbons:

The second sine wave has a frequency 
of 3; three repeats of the wave across 
the unit cell. It has a different phase, in 
other words we start at a different place 
on the wave. The amplitude is also 
different: 

Courtesy of Kevin Cowtan. http://www.ysbl.york.ac.uk/~cowtan/ Used with permission.

http://www.ysbl.york.ac.uk/~cowtan/


The Phase Problem: Fourier Synthesis

Let’s imagine a one dimensional crystal 
with a three-atomic molecule in the unit 
cell: two carbons and one oxygen. The 
electron density in this unit cell looks 
like this:

Finally, we introduce a sine wave with a 
frequency of 5. Two of the peaks of this 
wave are lined up with the carbon 
atoms:

Courtesy of Kevin Cowtan. http://www.ysbl.york.ac.uk/~cowtan/ Used with permission.

http://www.ysbl.york.ac.uk/~cowtan/


The Phase Problem: Fourier Synthesis

Let’s imagine a one dimensional crystal 
with a three-atomic molecule in the unit 
cell: two carbons and one oxygen. The 
electron density in this unit cell looks 
like this:

Now we add them all together: 

Courtesy of Kevin Cowtan. http://www.ysbl.york.ac.uk/~cowtan/ Used with permission.

http://www.ysbl.york.ac.uk/~cowtan/


The Phase Problem: Fourier Synthesis

FT
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Now we will look at the Fourier 
Transform of the same unit cell

Now we add them all together: 

Courtesy of Kevin Cowtan. http://www.ysbl.york.ac.uk/~cowtan/ Used with permission.

http://www.ysbl.york.ac.uk/~cowtan/


The Phase Problem: Animal Magic
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Fourier 
transform 
of a duck

A duck
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Fourier 
transform 
of a cat

A cat

Courtesy of Kevin Cowtan. http://www.ysbl.york.ac.uk/~cowtan/ Used with permission.
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The Phase Problem: Animal Magic

FT

FT

Combine the 
magnitudes
from the Duck
transform with 
the phases
from the Cat
transform

Combine the 
magnitudes
from the Cat
transform with 
the phases
from the Duck
transform
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FT

The phase contains the bulk of the 
information! Courtesy of Kevin Cowtan. http://www.ysbl.york.ac.uk/~cowtan/ Used with permission.

http://www.ysbl.york.ac.uk/~cowtan/


Symmetry in Reciprocal Space

Before we can talk about how to solve the phase problem, we need to talk 
about symmetry in reciprocal space.

Symmetry in the crystal (real space) influences the symmetry in reciprocal 
space. A twofold in real space causes a twofold in reciprocal space, a 
mirror, causes a mirror, a fourfold a fourfold, etc. 

The reciprocal space, however, is always centrosymmetric, and translational 
symmetry has no effect on the symmetry in reciprocal space. That means a 
P2, P21, P2/m, P21/m, P21/c, etc. all correspond to the same symmetry 
group in reciprocal space. 

The symmetry group in reciprocal space is called Laue group. There are 
eleven of them.



Symmetry in Reciprocal Space

Diffraction pattern of a 
cubic insulin crystal, 
observed with CuKα
radiation.

Courtesy of George M. Sheldrick. Used with permission.



Symmetry in Reciprocal Space

Triclinic:
hk0 layer.

Triclinic:
hk1 layer.

Orthorhombic:
hk1 layer.

Orthorhombic:
hk0 layer.

Courtesy of George M. Sheldrick. Used with permission.



Symmetry in Reciprocal Space

The diffraction pattern is always centrosymmetric (at least in good 
approximation). Friedel’s law: Ihkl = I-h-k-l.

Fourfold symmetry in the diffraction pattern corresponds to a fourfold axis in 
the space group (4, 4, 41, 42 or 43), threefold to a threefold, etc.

If you take away the translational part of the space group symmetry and add 
an inversion center, you end up with the Laue group. The Laue group 
describes the symmetry of the diffraction pattern. The Laue symmetry can 
be lower than the metric symmetry of the unit cell, but never higher.

That means: A monoclinic crystal with β = 90° is still monoclinic. The 
diffraction pattern from such a crystal will have monoclinic symmetry, even 
though the metric symmetry of the unit cell looks orthorhombic.

There are 11 Laue groups: 
-1,   2/m,   mmm,   4/m,   4/mmm,   -3,   -3/m,   6/m,   6/mmm,   m3,   m3m



Laue Symmetry

432, -43m, m3mm3m

23, m3m3
Cubic

622, 6mm, -6m2, 6/mmm6/mmm

6, -6, 6/m6/m
Hexagonal

32, 3m, -3m-3/m

3, -3-3
Trigonal/ Rhombohedral

422, 4mm, -42m, 4/mmm4/mmm

4, -4, 4/m4/m
Tetragonal

222, mm2, mmmmmmOrthorhombic

2, m, 2/m2/mMonoclinic

1, -1-1Triclinic

Point GroupLaue GroupCrystal System



Space Group Determination

The first step in the determination of a crystal structure is the determination 
of the unit cell from the diffraction pattern.

Second step: Space group determination.

From the symmetry of the diffraction pattern, we can determine the Laue
group, which narrows down the choice quite considerably. Usually the Laue
group and the metric symmetry of the unit cell match.

The <| E2-1 |> statistics, can give us an idea, whether the space group is 
centrosymmetric or acentric. Even thought the diffraction pattern is always 
centrosymmetric, the intensity distribution across the reciprocal space is 
much more even for a centrosymmetric space group.

From systematic absences, we can determine the lattice type as well as 
screw axes and glide planes.

This is usually enough to narrow down the choice to a very short list.



E2-1 Statistics

We measure intensities I
I F2 F: structure factors

Normalized structure factors E:
E2 = F2/<F2> <F2>: mean value for reflections at same resolution

<E2> = 1

< | E2-1 | >  = 0.736 for non-centrosymmetric structures
0.968 for centrosymmetric structures

Heavy atoms on special positions and twinning tend to lower this value. 
Pseudo translational symmetry tend to increase this value.



E2-1 Statistics
< | E2-1 | >  = 0.736 for non-centrosymmetric structures

0.968 for centrosymmetric structures

<|E2–1|> = 0.968 <|E2–1|> = 0.736

2kl projection of the reflections of a 
structure in the space group P-1.

2kl projection of the reflections of a 
structure in the space group P1.

Courtesy of George M. Sheldrick. Used with permission.



Systematic Absences

Lattice centering and symmetry elements with translation (glide planes and 
screw axes) cause certain reflections to have zero intensity in the diffraction 
pattern. If, e.g., all reflections 0, k, 0 with odd values for k are absent, we 
know that we have a 21 axis along b.
Other example: if all reflections h, 0, l with odd values for l are absent, we 
have a c glide plane perpendicular to b.

How come?



Systematic Absences

Monoclinic cell, projection along b with c glide plane (e.g. Pc).

b

(x, ½-y, ½+z)

c’

a
In this two 2D projection the structure is 
repeated at c/2. Thus, the unit cell seems
to be half the size: c’ = c/2 in this projection. (x, y, z)

This doubles the reciprocal cell 
accordingly: c*’ = 2c*. Therefore, the 
reflections corresponding to this 
projection (h, 0, l) will be according to the 
larger reciprocal cell.

c

That means h, 0, l reflections with l ≠ 2n are not observed.



Systematic Absences

Lattice centering

R (rev.)h-k+k = 3n

R (obv.)-h+k+l = 3n

Bh+l = 2n

Ak+l = 2n

Ch+k = 2n

Ih+k+l = 2n
Pnonehkl

Symmetry
element

Conditions for 
reflections

Reflections
affected



Systematic Absences

Glide Planes

n ∟ ch+k = 2n

b ∟ ck = 2n
a ∟ ch = 2nhk0

n ∟ bh+l = 2n
c ∟ bl = 2nh0l

n ∟ ak+l = 2n

c ∟ al = 2n
b ∟ ak = 2n0kl

Symmetry
element

Conditions for 
reflections

Reflections
affected



Systematic Absences

Screw Axes

61, 65 ॥ cl = 6n

41, 43 ॥ cl = 4n

31, 32 ,62, 64 ॥ cl = 3n
21, 42 ,63 ॥ cl = 2n00l

41, 43 ॥ bk = 4n
21 ॥ Bk = 2n0k0

41, 43 ॥ ah = 4n
21 ॥ ah = 2nh00

Symmetry
element

Conditions for 
reflections

Reflections
affected



Frequently Occurring Space Groups

Space group frequency in the Cambridge Structure Database (1990):
P21/c 39%  
P-1 16% 
P212121 12% 
C2/c 7%
Pbca 5%
Sum: 79%

Space group frequency in the Protein Data Bank (PDB):
P212121 24%
P3121 & P3221 15%
P21 14%
P41212 & P43212    8%
C2 6%
Sum: 67%



The Triclinic, Monoclinic and Orthorhombic Space Groups

Crystal Laue Point Space
system group group group

Triclinic                   -1          1           P1

-1           P1

Monoclinic              2/m 2           P2, P21, C2

2/m P2/m, P21/m, C2/m, P2/c, P21/c, C2/c

Orthorhombic       mmm 222        P222, P2221, P21212, P212121, C222, C2221, 
I222, I212121, F222

mm2      Pmm2, Pmc21, Pcc2, Pma2, Pca21, Pnc2,
Pmn21, Pba2, Pna21, Pnn2, Cmm2, Cmc21,
Ccc2, Amm2, Abm2, Ama2, Aba2, Imm2,
Iba2, Ima2, Fmm2, Fdd2

mmm Pmmm, Pnnn, Pccm, Pban, Pmma, Pnna,
Pmna, Pcca, Pbam, Pccn, Pbcm, Pnnm,
Pmmn, Pbcn, Pbca, Pnma, Cmcm, Cmca,
Cmmm, Cccm, Cmma, Ccca, Immm, Ibam,
Ibca, Imma, Fmmm, Fddd

Underlined: unambiguously 
determinable from 
systematic absences. 
Red: chiral
Blue non-centrosymmetric
Black: centrosymmetric

m Pm, Pc, Cm, Cc
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