MIT OpenCourseWare <u>http://ocw.mit.edu</u>

5.111 Principles of Chemical Science Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

5.111 Lecture Summary #12

Readings for today: Section 2.9 (2.10 in $3^{rd} ed$), Section 2.10 (2.11 in $3^{rd} ed$), Section 2.11 (2.12 in $3^{rd} ed$), Section 2.3 (2.1 in $3^{rd} ed$), Section 2.12 (2.13 in $3^{rd} ed$). **Read for Lecture #13:** Section 3.1 (3^{rd} or $4^{th} ed$) – The Basic VSEPR Model, Section 3.2 (3^{rd} or $4^{th} ed$) – Molecules with Lone Pairs on the Central Atom.

Topics:I. Breakdown of the octet rule
Case 1. Odd number of valence electrons
Case 2. Octet deficient molecules
Case 3. Valence shell expansionII. Ionic bonds
III. Polar covalent bonds and polar molecules

I. BREAKDOWN OF THE OCTET RULE

Case 1. Odd number of valence electrons

For molecules with an odd number of **valence** electrons, it is not possible for each atom in the molecule to have an octet, since the octet rule works by ______ e-s.

Example: CH₃

2)	3(1) + 4 = valence electrons	H ₃ C	н. Н:С:Н
3)	3(2) + 8 = electrons needed for	r octet	н.с.п
4)	14 – 7 = bonding electrons		

Radical species: molecule with an ______ electron.

Radicals are usually very reactive. The reactivity of radical species leads to interesting (and sometimes harmful) biological activity.

Some radicals are more stable. For example, NO

NO N O

- 1) Draw skeletal structure
- 2) 5 + 6 = 11 valence electrons
- 3) 8 + 8 = 16 electrons needed for octet
- 4) 16 11 = _____ bonding electrons

Nitric oxide, NO

- an important cell-signaling molecule in humans.
- diffuses freely across cell membranes and signals for the smooth muscle in blood vessels to relax, resulting in vasodilation and increased blood flow.
- a *radical species*, NO has a short lifetime in the body, which makes it an ideal messenger molecule between adjacent cells.
- You may be familiar with a drug that inhibits the breakdown of an NO binding

partner (an enzyme), leading to increased blood flow: _____

the widening of blood vessels Figure by MIT OpenCourseWare.

vasodilation:

Now let's think about molecular oxygen, O₂.

What we expect: O O

- 2) ______valence electrons
- 3) ______ electrons needed for octet
- 4) ______ bonding electrons
- 5) Add two electrons per bond.
- 6) 2 bonding electrons remaining. Make double bond.
- 7) _______ valence electrons make lone pairs

Lewis method seems to work here, but in reality O₂ is a _____!

•0-0•

We need molecular orbital (MO) theory (Lecture #14).

Case 2. Octet deficient molecules

Some molecules are stable with an **incomplete** octet. Group 13 elements _____ and _____ have this property.

7)

Consider BF_3 F: F:

First, let's write the Lewis structure that achieves octets on every atom.

- 2) 3 + 3(7) = _____ valence electrons
- 3) $8 + 3(8) = _$ electrons needed for octet
- 4) 32 24 = _____ bonding e-s 5) assign two electrons per bond.
- $6) \qquad 8 6 = 2 \text{ extra bonding electrons}$
- 8) calculate formal charges:

 $FC_B = 3 - 0 - (\frac{1}{2})(8) = -1$

$$FC_{FDB} = 7 - (1/2)() =$$

$$FC_F = 7 - (1/2)() =$$

But experiments suggest that all three B-F bonds have the same length, that of a

_____bond.

The formal charges are more favorable for this structure.

Case 3. Valence shell expansion

Elements with n = or > 3 have empty _____ - orbitals, which means more than eight electrons can fit around the central atom.

Expanded valence shells are more common when the central atom is _____ and is bonded to small, highly electronegative atoms such as O, F, and Cl.

24 – 8 = 16 lone pair electrons

Consider PCl₅

To make five P-Cl bonds, need _____ shared electrons. So 40 - 10 = 30 lone-pair electrons.

Consider CrO₄²⁻

8) calculate formal charges:

 $FC_{Cr} = 6 - 0 - (\frac{1}{2})(8) = +2$ FC₀ = 6 - 6 - ($\frac{1}{2}$)(2) = -1

Total charge = 2 + 4(-1) = -2

But experimentally, Cr-O bond length and strength are between that of a single and double bond!

 $FC_{Cr} = 6 - 0 - (\frac{1}{2})12 = 0$ $FC_{ODB} = 6 - 4 - (\frac{1}{2})4 = 0$ $FC_{O} = 6 - 6 - (\frac{1}{2})2 = -1$ Valence shell expansion around Cr results in ______ formal charge separation. More stable Lewis structure.

II. IONIC BONDS

Ionic bonds involve the complete ______ of (one or more) electrons from one atom to another with a bond resulting from the electrostatic attraction between the cation and anion.

Consider the formation of NaCl from the neutral atoms, Na and Cl.

Na (g) \longrightarrow Na ⁺ (g) + e ⁻	$\Delta E = $ = 494 kJ/mol				
Cl + e⁻ → Cl⁻(g)	$\Delta E = - EA = \kJ/mol$				
Na (g) + Cl (g) \longrightarrow Na ⁺ (g) + Cl ⁻ (g)	$\Delta E = + \ kJ/mol$				
$\Delta E = IE_{Na} + (-EA_{Cl}) = 145 \text{ kJ/mol}$					
Problem: Na (g) + Cl (g) \Rightarrow Na ⁺ (g) + Cl ⁻ (g) has a positive ΔE . It energy.					
Solution: Coulomb attraction.					
$Na^+(g) + Cl^-(g) \longrightarrow NaCl(g)$	$\Delta E = -589 \text{ kJ/mol}$				
Net change in energy for the overall process:					
Na (g) + Cl (g) → NaCl (g)	$\Delta \mathbf{E} = \underline{\qquad \mathbf{kJ/mol}}$				

The mutual attraction between the oppositely-charged ions releases energy. The net energy change for the formation of NaCl is a **decrease** in energy.

We can calculate the Coulomb attraction based on the distance between the two ions (assume here that the ions are point charges):

$U(r) = \underline{z_1 z_2 e^2}$	for 2 unlike charges, z = charge numbers of the ions and
$\Theta(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0 \mathbf{r}}$	e = absolute value of the charge of an e- (1.602 X 10-19 C)

Calculate U(r) for Na⁺ and Cl⁻. NaCl has a bond length (r) = 2.36Å.

$$U(r) = (\underline{)()}(\underline{)(} \underline{)} = 4\pi(8.854 \times 10^{-12} \text{ C}^2\text{J}^{-1}\text{m}^{-1})(\underline{)} = 0$$
Convert to kJ/mol
$$U(r) = -9.7\underline{7}4 \times 10^{-19} \text{ J x} \underline{)} = 0$$

Simple ionic model predicts:	$\Delta E = -\Delta E_d = -444 \text{ kJ/mol}$
Experiments measure:	$\Delta E = -\Delta E_d = -411 \text{ kJ/mol}$

The discrepancy results from the following approximations:

- ignored repulsive interactions. Result: ΔE_d than experimental value.
- treated Na⁺ and Cl⁻ as ______.
- ignored quantum mechanics.

This simple model is applicable only to very ionic bonds.

III. POLAR COVALENT BONDS

Perfectly-ionic and perfectly-covalent bonds are the two extremes of bonding. In reality, most bonds fall somewhere in the middle.

A **polar covalent** bond is an ______ sharing of electrons between two atoms with different electronegativities (χ).

Consider H-Cl versus H-H (Pauling electronegativity values are given):

H – Cl
$$\chi_{\rm H} = 2.2$$
 $\chi_{\rm Cl} = 3.2$

 H^{δ_+} - Cl^{δ_-}

where δ is fraction of a full charge (e) that is asymmetrically distributed.

H – H H₂ is a "perfectly" covalent bond, $\delta = 0$.

Dipole moment

Asymmetric charge distribution results in an electric dipole, two unlike charges separated by a finite distance.

We can quantify charge separation by defining a dipole moment, $\vec{\mu}$.

In chemistry, the arrow points toward the negative charge in a polar bond.

In large organic molecules and in biomolecules, such as proteins, we often consider the number of polar groups within the molecule.

