MIT OpenCourseWare <u>http://ocw.mit.edu</u>

5.111 Principles of Chemical Science Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

5.111 Lecture Summary #16

- **Readings for today: :** Sections 6.13, 6.15, 6.16, 6.17, 6.18, and 6.20 (Sections 6.14, 6.16, 6.17, 6.18, 6.19, and 6.21 in 3rd ed) The Enthalpy of Chemical Change.
- **Read for Lecture #17:** Section 7.1 Spontaneous Change, Sections 7.2 and 7.8 Entropy, Sections 7.12, 7.13, + 7.15 Free Energy. (Section numbers are the same for the 3rd and the 4th ed.)

Topics: I. Valence bond theory and hybridization (continued from Lecture #15) Determining hybridization in complex molecules

II. Energies and enthalpies of chemical reactionsA. Bond energy/ bond enthalpyB. Heat of formation

I. VALENCE BOND THEORY AND HYBRIDIZATION (continued from Lecture #15)

DETERMINING HYBIDIZATION IN COMPLEX MOLECULES

To determine the hybridization of a given atom in a molecule,

(# of bonded atoms) + (# of lone pairs) = # of hybrid orbitals

2 hybrid orbitals- ____, 3 hybrid orbitals - ____, 4 hybrid orbitals- sp³

Exception: single-bonded, ______ atoms. For the purposes of this course, do NOT hybridize single, bonded, terminal atoms.

Example: ascorbic acid (vitamin C)

Identify the hybridization and geometry of each C atom:

 C_d :

C_e:

 C_{f} :

Identify the symmetry and name the hybrid or atomic orbitals that constitute the bonds below: Bonds to carbon b:

C_b-H:
C_b- C_a:
$$\sigma$$
(C2sp³, C2sp³)
C_b-C_c: σ (C2sp³, C2sp³)
C_b-O:

Bonds to carbon d:

$$C_d$$
-O:
 C_d - C_c : σ (C2sp², C2sp³)
 C_d - C_e :

II. ENERGIES AND ENTHALPIES OF CHEMICAL REACTIONS

A. BOND ENERGY/ BOND ENTHALPY

bond (dissociation) energy, ΔE_{d} , is the energy required to break a bond.

 Δ H, bond ______, is the change in heat accompanying the dissociation of a bond (measured at constant pressure P).

 $\Delta H = \Delta E + \Delta (PV)$

For gases, $\Delta H \& \Delta E$ differ by _____ %. For liquids and solids, negligible difference.

 $\Delta H^{\circ} =$ ______ bond enthalpy. Indicates reactants and products are in the standard state (pure form) at 1 bar for gasses.

Bond enthalpies for C—H bonds (all gases)

$CH_4 \rightarrow$	$CH_3 + H$	$\Delta H^{\circ} = +438 \text{ kJ/mol}$
$C_2H_6 \rightarrow$	$C_2H_5 + H$	$\Delta H^{\circ} = +410 \text{ kJ/mol}$
$CHF_3 \rightarrow$	$CF_3 + H$	$\Delta H^\circ = +429 \text{ kJ/mol}$
$CHCl_3 \rightarrow$	$CCl_3 + H$	$\Delta H^{\circ} = +380 \text{ kJ/mol}$
$CHBr_3 \rightarrow$	$CBr_3 + H$	$\Delta H^{\circ} = +377 \text{ kJ/mol}$

 ΔH° is positive – _____

The C-H bond enthalpies listed above are all within 8% of the average value (______kJ/mol) for C-H bonds. (See Table 6.8 in the text.)

What is the importance of bond enthalpies? The difference between bond enthalpies in products and reactants gives an estimate of the enthalpy of reaction.

 $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$ $\Delta H_r^\circ = -2816 \text{ kJ/mole}$

 ΔH° is negative - _____

To calculate ΔH_r° for the oxidation of glucose (or for any reaction):

bond enthalpies

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$\Delta H_{r}^{\circ} = \sum \Delta H_{i} - \sum \Delta H_{j}$$
ith bond jth bond
in reactants in products

If bonds stronger in products than reactants, ΔH is ______ (____). If bonds stronger in reactants than products, ΔH is ______ (endothermic).

 $\Delta H_r^{\circ}_{experimental} = -2,816 \text{ kJ/mol}$

Agreement within 3%, very good for mean bond enthalpies.

B. HEAT OF FORMATION

More accurate approach...use heat of formation - ΔH_{f}°

 $\Delta H_{f}^{\circ} = \Delta H_{r}^{\circ}$ for forming 1 mol of compound from pure elements in their most stable form at the standard state = 1 bar and 298.15 K

 $\begin{array}{ll} H_2(g) \ + \ (1/2)O_2(g) \ \rightarrow \ H_2O(l) \\ \mbox{stable form} & \mbox{stable form} \\ \mbox{of hydrogen} & \mbox{of oxygen} \end{array} \qquad \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ H_2O(l) \\ \Delta H^\circ = -\ 393.5 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \\ \mbox{stable form} & \mbox{of oxygen} \end{array} \qquad \Delta H^\circ = -\ 393.5 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \\ \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \\ \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \\ \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \\ \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \\ \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \\ \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \\ \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \\ \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \\ \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \\ \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \\ \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \\ \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \\ \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \\ \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \\ \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \\ \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \\ \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \\ \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \\ \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \\ \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \\ \Delta H^\circ = -\ 285.8 \ kJ/mol = \Delta H_f^\circ \ for \ CO_2(g) \ for \ ho_2(g) \$

The heat of formation of an element in its most stable state is ______.

$$3O_2(g) + 6C_{gr} + 6H_2(g) \rightarrow C_6H_{12}O_6$$
 $\Delta H_f^{\circ} = ___. kJ/mol \text{ for } C_6H_{12}O_6$

We can calculate ΔH_r° for glucose oxidation (or any other reaction) using ΔH_f° .

 $\Delta H_r^{\circ} =$ ______ kJ/mol

Same value as experiment because ΔH_f° is specific to a compound. Table of ΔH_f° for compounds is small compared to a table of ΔH for all possible reactions or to a table of individual bond enthalpies for each bond in all possible molecules!

Enthalpy is a "STATE" FUNCTION, which means ΔH is ______ of path.

Hess's Law: If two or more chemical equations are added to give another chemical equation, corresponding _____ must be added.

 $\Delta H^{\circ} \text{ for glucose oxidation (all values in kJ):} \qquad \Delta H_{r}^{\circ}$ $C_{6}H_{12}O_{6} + 6O_{2} \longrightarrow 6C_{gr} + 6H_{2} + 3O_{2} + 6O_{2}$ $6\left[C_{gr} + O_{2} \longrightarrow CO_{2}\right]$ $6\left[H_{2} + 1/2O_{2} \longrightarrow H_{2}O\right]$

 $C_6H_{12}O_6 + 6O_2 \implies 6 CO_2 + 6H_2O \qquad \Delta H^\circ =$