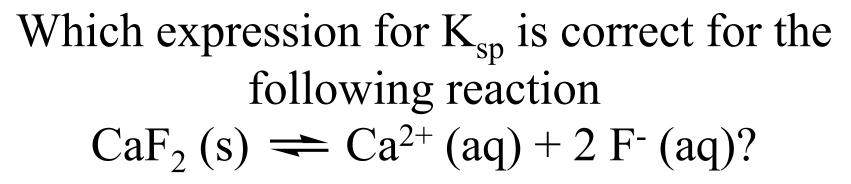
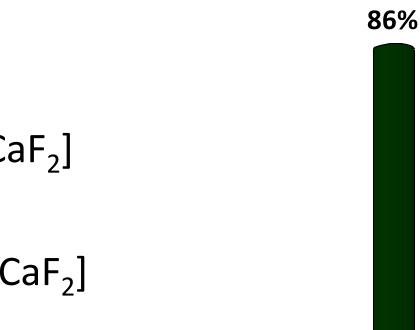
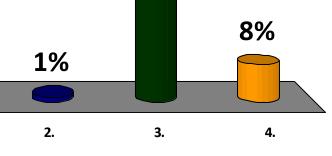

Select the correct value with the appropriate number of sig figs for $10^{1.541}$

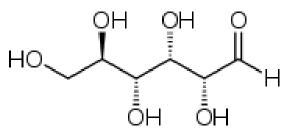

- 1. 34.8
- 2. 34.75
- 3. 34.754
- 4. 34.7536
- 5. 34.75362


Select the correct value with the appropriate number of sig figs for $10^{1.541}$

Which expression for K_{sp} is correct for the following reaction $CaF_{2}(s) \rightleftharpoons Ca^{2+}(aq) + 2 F^{-}(aq)?$

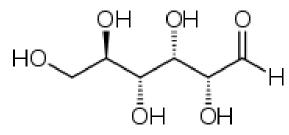
- 1. [Ca²⁺][F⁻]
- 2. [Ca²⁺][F⁻]/[CaF₂]
- 3. [Ca²⁺][F⁻]²
- 4. $[Ca^{2+}][F^{-}]^{2}/[CaF_{2}]$




5%

1.

- 1. [Ca²⁺][F⁻]
- 2. [Ca²⁺][F⁻]/[CaF₂]
- ∕3. [Ca²⁺][F⁻]²
 - 4. $[Ca^{2+}][F^{-}]^{2}/[CaF_{2}]$



Is glucose a hydrogen bond donor or hydrogen bond acceptor (or both or neither)?

- 1. Hydrogen bond acceptor
- 2. Hydrogen bond donor
- 3. <u>Both</u> a hydrogen bond acceptor and donor
- 4. <u>Neither</u> a hydrogen bond acceptor or donor

Is glucose a hydrogen bond donor or hydrogen bond acceptor (or both or neither)?

- ^{5%} 1. Hydrogen bond acceptor
- 8% 2. Hydrogen bond donor

87% 3. <u>Both</u> a hydrogen bond acceptor and donor

0% 4. <u>Neither</u> a hydrogen bond acceptor or donor

From the figure and your knowledge of partial pressures, state which of the following are true:

- 1. Oxygen is more soluble in liquid at 0.5 atm than helium.
- 2. Solubility of each gas increases as its partial pressure increases
- 3. An increase in partial pressure of a gas will increase the rate at which gas molecules strike the surface of solvent, increasing the solubility of the gas
- 4. All of the above

From the figure and your knowledge of partial pressures, state which of the following are true:

- Oxygen is more soluble in liquid at 0.5 atm than helium.
 - 2. Solubility of each gas increases as its partial pressure increases
 - 3. An increase in partial pressure of a gas will increase the rate at which gas molecules strike the surface of solvent, increasing the solubility of the gas
- 92% 4. All of the above

5%

2%

What is true if the enthalpy of solution, ΔH_{sol} is positive?

- 1. dissolving is never spontaneous
- 2. dissolving is only spontaneous if $T\Delta S$ is positive and larger than ΔH_{sol}
- 3. dissolving is only spontaneous if $T\Delta S$ is negative
- 4. the rate of dissolving will be slower

What is true if the enthalpy of solution, ΔH_{sol} is positive?

- ^{4%} 1. dissolving is never spontaneous
- $^{76\%}$ 2. dissolving is only spontaneous if T Δ S is positive and larger than Δ H_{sol}
- $\begin{array}{c} \textbf{3.} \\ \textbf{16\%} \\ \textbf{16\%} \\ \textbf{16\%} \\ \textbf{T}\Delta S \text{ is negative} \end{array}$

4%

4. the rate of dissolving will be slower

From Example 2b: Identify which are Bronsted-Lowry acids and which are Bronsted-Lowry bases for $HCO_3^{-}(aq) + H_2O(l) \Longrightarrow H_2CO_3(aq) + OH^{-}(aq)$

- 1. HCO_3^- acid H_2O acid H_2CO_3 base OH^- base
- 2. HCO_3^- acid H_2O base H_2CO_3 base OH^- acid
- 3. HCO_3^- acid H_2O base H_2CO_3 acid OH^- base
- 4. HCO_3^{-} base H_2O acid H_2CO_3 base OH^{-} acid
- 5. HCO_3^{-} base H_2O acid H_2CO_3 acid OH^{-} base
- 6. HCO_3^- base H_2O base H_2CO_3 acid OH^- acid

From Example 2b: Identify which are Bronsted-Lowry acids and which are Bronsted-Lowry bases for $HCO_3^{-}(aq) + H_2O(l) \Longrightarrow H_2CO_3(aq) + OH^{-}(aq)$

<mark>2%</mark>	1.	HCO_3^- acid	H ₂ O acid	H ₂ CO ₃ base	OH ⁻ base
11%	2.	HCO ₃ ⁻ acid	H ₂ O base	H ₂ CO ₃ base	OH ⁻ acid
10%	3.	HCO ₃ ⁻ acid	H ₂ O base	H_2CO_3 acid	OH ⁻ base
4%	4.	HCO ₃ ⁻ base	H_2O acid	H ₂ CO ₃ base	OH ⁻ acid
72%	<u> </u>	HCO_3^- base	H_2O acid	H_2CO_3 acid	OH ⁻ base
1%	6.	HCO ₃ ⁻ base	H ₂ O base	H_2CO_3 acid	OH ⁻ acid

MIT OpenCourseWare http://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.