Terpene Biosynthesis: C25: Sesterterpenes

OH

geranylfaresol

Not much reported Limited to certain fungal/marine species 15

Squalene Synthase

Enzyme responsible for squalene biosynthesis from 2 units of farnesyl PP, head to head

Cloned from variety of organisms plants, rat, human, yeast

One active site

Squalene Synthase Enzyme responsible for squalene biosynthesis from 2 units of farnesyl PP, head to head

Oxidosqualene Cyclase

In mammals, sterol biosynthesis best studied

squalene

cyclization to lanosterol (animals, fungi) Chair boat chair conformation Protonate epoxide and open 1,2 hydride/methyl shifts to protosteryl cation Lanosterol synthase (fungi, animals) Cycloartenol synthase (plants) Also diepoxide substate oxysterols

squalene oxide

Need terminal methyl group for correct folding (C10) chair chair boat

Aromatase-catalyzed conversion of androstenedione to estrone

Three possible mechanisms for the last step in the aromatase-catalyzed oxygenation of androstenedione.

Figure by MIT OCW.

Squalene-Hopene Cyclase

Prokaryote triterpene synthesis Squalene is the substrate- not squalene epoxide

Chair chair substrate conformation

DDTAV Change to DCTAE: specific for oxosqualene

Crystal structure (Alicyclobacillus acidocaldarius) Large binding pocket Can accept larger substrates C35

cyclization is initiated by protonation of a double bond resulting in tertiary cation squalene rings A and B are formed as 5-H⁻ membered rings via Markovnikov H₂O: addition; they then expand to 6membered rings via W-M rearrangements H₂O: .''OH Н Н Н Н Ē Н Ē OH Ē Ē Ξ Ξ Ē Ē Ē tetrahymanol Ξ Ē HO hopan-22-ol

Figure by MIT OCW

Abietadiene Synthase bifunctional diterpene cyclase from fir

cannot separate functional domains

cloned (a.a. sequence is)

don't know structure

"homology modeling'

ep.-aristolochene synthase enzyme as a model (sequiterpene synthase) Figure removed due to copyright reasons.

Gibberrellin phytohormone bifunctional enzyme in fungi two enzymes in plant

2 individual enzymes

Higher plants

1 bifunctional enzyme

Figure by MIT OCW.

Index of figures removed due to copyright reasons

Jennewein, S., and R. Croteau. Figure 2 in "Taxol: biosynthesis, molecular genetics, and biotechnological applications." *Applied Microbiol Biotech* 57 (2001): 13-19.

Jennewein, Stefan et al. "Random sequencing of an induced Taxus cell cDNA library for identification of clones involved in Taxol biosynthesis." *PNAS* 101 (2004): 9149-9154.

Brown, Geoffrey D. Scheme 8 in "The biosynthesis of steroids and triterpenoids." *Natural Product Reports* 15 (1998): 653-696.

Abe, Ikuro, Michel Rohmer, and Glenn D. Prestwich. Scheme VI in "Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes." *Chemical Reviews* 93 (1993): 2189 – 2206.

Rilling, H.C., and Chayet, L.T. "The 19-reaction conversion of lanosterol to cholesterol." Danielsson, H., and Sjovall, J., eds. *Sterols and Bile Acids*. New York, NY: Elsevier, 1985. ISBN: 0444806709.

Hoshino, Tsutomu, and Tsutomu Sato. Figure 3 in "Squalene–hopene cyclase: catalytic mechanism and substrate recognition." *Chemical Communications* (2002): 291 – 301.

Peters, Reuben J. Scheme 1, Figure 1, and Table 1 in "Bifunctional Abietadiene Synthase: Mutual Structural Dependence of the Active Sites for Protonation-Initiated and Ionization-Initiated Cyclizations." *Biochemistry* 42 (2003): 2700-2707.

Williams, David C. et al. Figures 1, 3 and 6 in "Intramolecular proton transfer in the cyclization of geranylgeranyl diphosphate to the taxadiene precursor of taxol catalyzed by recombinant taxadiene synthase." *Chemistry & Biology* 7 (2000): 969 - 977.