Terpene Biosynthesis:
C25: Sesterterpenes

geranylfaresol

Ophiobolene

Not much reported
Limited to certain fungal/marine species



Squalene Synthase

Enzyme responsible for squalene biosynthesis from 2 units of farnesyl PP, head to head

Cloned from variety of organisms plants, rat, human, yeast

One active site

Form presqualene synthase and then reductive rearrangement (NADPH) to squalene I
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Squalene Synthase

Enzyme responsible for squalene biosynthesis from 2 units of farnesyl PP, head to head

Removal of NADPH
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Oxidosqualene Cyclase

NS N N
In mammals, sterol biosynthesis best studied W

cyclization to lanosterol (animails, fungi)

Chair boat chair conformation

Protonate epoxide and open 1,2 hydride/methyl shifts to protosteryl cation
Lanosterol synthase (fungi, animals)
Cycloartenol synthase (plants)

Also diepoxide substate oxysterols

cyclizations
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Need terminal methyl group for correct folding (C10) squalene oxide
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Aromatase-catalyzed conversion of androstenedione to estrone
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Three possible mechanisms for the last step in the aromatase-catalyzed oxygenation of androstenedione.
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Squalene-Hopene Cyclase

Prokaryote triterpene synthesis
Squalene is the substrate- not squalene epoxide

Chair chair chair substrate conformation

DDTAV
Change to DCTAE: specific for oxosqualene

Crystal structure (Alicyclobacillus acidocaldarius)
Large binding pocket
Can accept larger substrates

C35
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protonation of double bond
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Abietadiene Synthase
bifunctional diterpene cyclase
from fir

cannot separate functional domains

cloned
(a.a. sequence is) Figure removed due to copyright reasons.

don't know structure

"homology modeling'

ep.-aristolochene
synthase enzyme as a model
(sequiterpene synthase)



Gibberrellin

phytohormone

bifunctional enzyme in fungi
two enzymes in plant

2 individual enzymes

Higher plants

protonation ionization
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yeast

1 bifunctional enzyme
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