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Lecture 23: Many–Electron Atoms 
Last Lecture: 

• need to make a small approximation to pretend that the center of mass is at the 
~nucleus, thus the coordinates are {~ri} for the electrons and R = 0 for the nucleus 

• For He, the inter–electron repulsion term 

2 2e e
abbreviated as 

|~r1 − ~r2| r12 

is bad news. It destroys n1, `1, n2, `2 orbital quantum numbers because it does not 
` 2 ` 2commute with b1 and b2. 

• Non-interacting electron approximation: ignore e2 
term 

r12 

Z2 Z2 

En1,`1;n2,`2 = − − .
2 22n 2n1 2 

Sum of H–atom orbital energies. The 2 in the denominator reflects our choice of atomic 
units where 1 au of Energy (the Hartree) is 2hc<∞. 

• Independent electron approximation � � 
1 

include 
r12 

(like first-order perturbation theory). 

• Electrons are identical, therefore wavefunctions must be eigenfunctions of permutation 
operator. All half-integer spin particles (where all e− have s = 1/2) are Fermions, and 
the permutation symmetry for Fermions is 

bP12Ψ(1, 2) = Ψ(2, 1) = −Ψ(1, 2). 

• Ψ is a product of a spatial and a spin part because [ Hb , S2] = 0, and [ Hb , SZ ] = 0. The 
spin part of Ψ(1, 2) must be an eigenfunction of Sb2 and Sbz. S is the total electron spin. 

We know matrix elements of Sb2 , Sbx, Sby, Sbz, Sb+ and Sb− 

~S = ~s1 + ~s2. 



5.61 Lecture 23 Fall, 2017 Page 2 

For 2 electrons we have S = 1 (triplet) and S = 0 (singlet) spin eigenfunctions 

MS 

S = 1 α(1)α(2) 1 
2−1/2[α(1)β(2) + β(1)α(2)] 0 

β(1)β(2) −1 

S = 0 2−1/2[α(1)β(2) − β(1)α(2)] 0 

The S = 1 eigenstates are SYMMETRIC. The S = 0 eigenstates are ANTI-SYMMETRIC. 

• Ψ(1, 2) = Ψspace(~r1, ~r2)Ψspin(σ1, σ2) 

Overall antisymmetry requirement is satisfied for 

space spin S 
singlet sym anti 0 
triplet anti sym 1 

~Even though S makes no contribution to Hb for Helium, the sym and anti spatial states 
have different energies. Thus, via permutation symmetry, spin makes an indirect but 
a large contribution to the eigen-energies and the form of the spatial eigenstates. 

TODAY: MANY ELECTRON ATOMS 

1. Slater determinants satisfy the general Pij Ψ(1, 2, . . . i, . . . j, . . . n) = −Ψ anti-symmetrization 
requirement for all pairs of electrons. 

2. Relationship between “stick diagrams” and Coulomb ( Jeij ) and Exchange ( Keij ) inte-
grals. 

3. Qualitative Energetic Effects 

a. Hund’s Rules 

b. Shielding 
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Slater Determinants 

For Helium 1s2s 

Ψ1s,2s(1, 2) = 2−1/2 [1s(1)2s(2) ± 2s(1)1s(2)]{z
space

}| }2−1/2 [α(1)β(2)   β(1)α(2)]{z
spin

|
satisfies Pb12Ψ(1, 2) = Ψ(2, 1) = −Ψ(1, 2). 
How do we ensure, for N > 2 electrons, that 

Pij Ψ(. . . i, j . . . ) = −Ψ(. . . i, j . . . ) for all i, j?b
Turns out that J. C. Slater [an MIT physicist, see Phys. Review 34, 1293 (1929)] invented a 
very simple solution to this problem based on the properties of determinants. 
Let us include all occupied “spin–orbitals”, which are a one-electron spatial orbital times 

either the α or β spin function, denoted as ψk1 , ψk2 , . . . ψkN . Then for N electrons we have 
Slater determinantal wavefunction �������� 

ψk1 (1) ψk2 (1) . . . ψkN (1) 
ψk1 (2) ψk2 (2) . . . ψkN (2) 
. . . 

ψk1 (N) . . . . . . ψkN (N) 

�������� .Ψ(1, 2, . . . , N) = [N !]−1/2 

This bulky notation can be abbreviated to 

[N !]−1/2 

������ 
������ 

k1(1) · · · kN (1) 
· · · 

k1(N) · · · kN (N) 

or, better ������ 
������ 

1(1) · · · N(1) 
· · · 

1(N) · · · N(N) 
[N !]−1/2 

or BEST �� ��[N !]−1/2 k1 · · · k2 · · · kN 

which specifies only the main diagonal of the determinant. 
Let’s convince ourselves that these Slater determinants exhibit the properties we require 

using 2 × 2 determinants ���� ���� a b 
c d 

b a 
d c 

c d 
a b 

= ad − bc ���� ����permute columns (electrons) = bc − ad 

permute rows (orbitals) 

���� ���� = bc − ad 
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So permutation of any two columns or rows causes a sign change in the value of the 
determinant. 
Another wonderful property of determinants is that if any two columns or any two rows 

are the same, the value of the determinant is zero. Two identical columns would correspond 
to the two electrons in the same spin–orbital, which we know is illegal from the 5.111/5.112 
“Pauli Exclusion Principle”. ���� ���� 

���� a a 
c c 

a b 
a d 

= ac − ac = 0 ���� = ab − ab = 0. 

It turns out that it is the anti-symmetry of Fermions that is the fundamental principle 
behind the convenient rule you memorized, perhaps even in High School. From the Pauli 
Exclusion Principle we get “aufbau”, which gives us some insight into the energy order of 
“configurations”: n1 ̀  1 n2 ̀  2, etc. 
There is more to life than only the configuration, as we shall see. 

Relationship between “stick diagrams” and Slater de-
terminants. 

Recall, for Helium, we used stick diagrams 

6 62sα2s 2sβ 
? ? 

6 6 61sα1s 1sβ 
? ? ? 

21s 1sα2sα 1sα2sβ 1sβ2sα 1sβ2sβ 

(I have used the stick diagrams with an extra constraint, because I want to make the 
connection to spin-orbitals rather than simply to spatial orbitals.) 
In the previous lecture we saw that, for 2–electron stick diagrams there was a direct 

relationship between each stick diagram and a pair of Coulomb (Jij ) and Exchange (Kij ) 
integrals. In the independent electron approximation, the expectation value of e2/r12, for 
two electrons E bD 

H(1) 

� ���� 1 ���� � e
The over-tilde’s warn us that we need to worry about the spin part of the integral. 

Ψij Ψij Jij − Keij .= =
r12 
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Note that 1/rij does not depend on any spin coordinates. This means that all matrix 
elements of 1/rij must be diagonal in the spin (α/β) of the i and j electrons. For 2 electrons 

2 2 2Je1s = J1s Ke1s = 0 e eJ1sα,2sα = J1s,2s K1sα,2sα = K1s,2s e eJ1sα,2sβ = J1s,2s K1sα,2sβ = 0. 

If instead we look explicitly at the αβ + βα and αβ − βα spin eigen-states, we want � � 

2−1/2[Ψ1sα,2sβ ± Ψ1sβ,2sα] 
1 
[Ψ1sα,2sβ ± Ψ1sβ,2sα] 

r12 

from which we get 

1 1 
(J1s2s + J1s2s)   (K1s2s + K1s2s) = J1s2s   K1s2s. 
2 2

from diagonal from cross terms 6 
terms 

note that this sign 
reversal comes from the 
1-2 electron permutation 

Top sign corresponds to triplet 

E3s = J1s,2s − K1s,2s 

E1s = J1s,2s + K1s,2s 

as expected from previous lecture. 
For the N -electron problem: use Slater determinants to compute energies. 
Some rules, that could be tediously derived . . . 

Non-Lecture 
For a “one–electron” operator 

−r2 
i Z 

1. − (hydrogen atom) 
2 ri 

2. Zeeman effect X bHz = −BZ (Lz + 2Sz) = −BZ (` zi + 2szi) 
i 

3. Spin-Orbit � � 
1 

Hb SO = a(ri)` i · si = a(ri) ` ziszi + (` +is−i + ` −is+i)
2

Selection Rule: Δso = 0,1 (“so” refers to a spin-orbital) 
For Δso = 0 (diagonal element) 

NX 
hΨ(N)|Op(i)|Ψ(N)i = hni ̀  iσi|Op(i)|ni ̀  iσii 

i=1 



5.61 Lecture 23 Fall, 2017 Page 6 

a sum of simple single-orbital integrals. 
It is always the sum of all diagonal matrix elements between spin-orbitals. 
For Δso = 1 

0 `0 σ0hΨ(N)|Op(i)|Ψ0(N)i = (−1)p hni ̀  iσi|Op|n i .i i i

The (−1)p factor expresses the number of adjacent spin-orbital pair permutations needed to 
bring the mis–matched orbitals into the same location. For example: 

h|abcd|Op(i)|acde|i b, e mis–match 

|acde| → |aced| → |aecd| p = 2 

For a 2–electron operator, Op(i, j), things are much more complicated and mostly beyond 
the scope of 5.61. 
Selection rule: Δso= 0, 1, 2. 

End of Non-Lecture 

Here we will consider only ΔS = 0 for Op(i, j) = e
2 

rij 

NXX 
hΨ(N)|Op(i, j)|Ψ(N)i = (Jeij − Keij ). 

i=1 j>i 

The sum of orbital integrals extends over all pairs of spin–orbitals. Note that if Op(i, j) e edoes not depend on spin, the spin selection rule gives Jij = Jij but Kij = 0 if σi 6 σj and= eKij = Kij if σi = σj . 
There is an additional special case, where Ψ(N) cannot be expressed as a single Slater 

determinant. 
For example, consider the MS = 0 states of the 1s2s configuration of Helium. 
The stick diagrams 

6 

? 

and 

6 

? 

1sα2sβ 1sβ2sα 
are needed to describe the MS = 0 S = 1 and MS = 0 S = 0 states. It is necessary to 
describe the 2–electron wavefunction Ψ(2) by two Slater determinants 

ΨS,T (2) = 2−1/2[|1sα, 2sβ| ± |1sβ, 2sα|]. 
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There are four non–zero matrix elements: � � 
1 |1sα, 2sβ| |1sα, 2sβ| = J1s2s 
r12� � 
1 |1sα, 2sβ| |1sβ, 2sα| = −K1s2s 
r12� � 
1 |1sβ, 2sα| |1sα, 2sβ| = −K1s2s 
r12� � 
1 |1sβ, 2sα| |1sβ, 2sα| = J1s2s. 
r12 

Thus the overall 1/r12 matrix element for ΨS,T (2) states with definite Sb2 character is � � � �� �1 1 
Ψ(2) � �� Ψ(2) = [2J1s2s   2K1s2s]� 2r12 

top sign is S = 1 (triplet), bottom is S = 0 (singlet). 
It is important to notice that both |1sα, 2sβ| and |1sβ, 2sα| are anti–symmetric with 

respect to electron permutation. Thus both of the MS = 0, S = 1 and MS = 0, S = 0 linear 
combinations of Slater determinants are also anti-symmetric. 

P12ΨS,T (2) = 2−1/2[|2sβ, 1sα| ± |2sα, 1sβ|] 
= −2−1/2[|1sα, 2sβ| ± |1sβ, 2sα|] 
= −ΨS,T (2) 

Non–Lecture 
Construction of eigenstates of Sb2 , Sbz, Lb2 , Lbz. bS is a vector sum of ŝi. 

For two e− , S = 0 and 1 
For three e− S = 3/2, 1/2, and 1/2 
For four e− S = 2, 1, 1, 1, 0, 0 

The eigenfunctions of Sb2 are tabulated in many publications (see page 151 of H. Lefebvre-
Brion and R.W. Field, “Spectra and Dynamics of Diatomic Molecules”, Elsevier, 2004). 
Similarly for Lb as a sum of b̀i. 
Thus it is often necessary to evaluate J and K integrals for specific linear combinations 

of Slater determinants. 
But here is an important simplification: since Sb2 , Sbz, Lb2, and Lbz commute with Hb and 

the energies of the many–electron eigenstates of Lb2 and Sb2 do not depend on ML and MS , 
all you need to do is to find extreme ML,MS states: ML = L, MS = S for maximum L for 
each S. These are always single Slater determinants. 
Once you have done this, you could generate all 2L + 1 ML components and 2S + 1 

MS components of these extreme L, S states by applying Sb− and Lb− lowering operators 
repeatedly. 
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The sum of the energies of all Slater determinants that are associated with a particular 
ML, MS block of b , S2 eigenstates represented H is equal to the sum of the energies of all L2 

in that block. This “trace invariance” provides a nice shortcut to determining all of the EL,S 

energies for each electronic configuration of a many electron atom. 
End of Non–Lecture 

3. Qualitative Energetic Effects 

A. Hund’s Rules 

Hund’s rules tell us which single L − S − J eigenstate is expected to be the lowest energy 
eigenstate among all of the eigenstates that belong to a single electronic configuration. 
For example, 1s2s gives 1S and 3S states. 3S is the lowest. 
Another example, 2p3p gives 3D, 1D, 3P , 1P , 3S, and 1S L − S states. Each L − S state 

has J = L + S, L + S − 1, · · · |L − S| total angular momentum J states. Of these 3DJ=1 is 
lowest. 
Hund’s first rule: The lowest energy state is one where the S has maximum value. 
Hund’s second rule: The lowest energy state is, among those with maximum S, the 

one with maximum L. 
Hund’s third (and final) rule: The lowest energy J component of the single maximum– 

S, maximum–L state is J = |L − S| if the `–shell is less than half full (full shell for s is 2, p 
is 6, d is 10) and J = L + S if the `–shell is more than half-full. 
Now I want to give you a tiny hint about where the first rule comes from. 
Look again at the two MS = 0 stick diagrams and the associated S = 1 (triplet) and 

S = 0 (singlet) states of 1s2s. 

6 

? 

and 

6 

? 

1sα2sβ 1sβ2sα 

Ψ(1, 2) = 2−1/2[1s(1)2s(2) ± 2s(1)1s(2)]2−1/2[α(1)β(2)   β(1)α(2)] 

top sign is singlet S = 0, MS = 0 
bottom sign is triplet S = 1, MS = 0 

Why is singlet state in 1s2s always at higher energy than triplet state? 
Why? Electrons repel! What could be the most repulsive arrangement imaginable? 



� 
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Suppose we try to put both electrons at the same position: ~r1 = ~r2. If we look at 
this special region of the spatial part of the two–electron wavefunction, we see something 
important: 

1s(r1)2s(r2 = r1) ± 2s(r1)1s(r2 = r1) 

bottom sign (triplet) ψ(r1, r2 = r1) = 0! 

top sign (singlet) ψ(r1, r2 = r1) = 0!6

and very strong repulsion results for the singlet state. 
This is a very suggestive argument that 1S is less stable (lies at higher E) than 3S. 
This is borne out by the J1s2s, K1s2s integrals 

E(1S) − E(3S) = 2K1s2s 

K is a repulsion energy so it is always positive. 
Finally: here is a suggestion for why K1s2s < J1s2s. Rearrange the factors in the definition 

of the J and K integrals. ZZ 
1 

J1s2s = 1s(r1)1s(r1) 2s(r2)2s(r2)dr1dr2 
r12 

1s(r1)1s(r1) = ρ1s(r1) a probability distribution 

2s(r2)2s(r2) = ρ2s(r2) another probability distribution 

So J is the electrostatic interaction between two charge distributions. That is why we call 
it a Coulomb integral. ZZ 

1 
K1s2s = 1s(r1)2s(r1) 1s(r2)2s(r2)dr1dr2 

r12 

1s(r1)2s(r1) is not a probability distribution. It has complicated nodal structure, and it is 
less localized than either ρ1s or ρ2s. This means that |K1s2s| < |J1s2s|. 

B. Shielding 

In electrostatics, it is possible to calculate the Coulomb interaction between a point charge 
and a uniform spherical charge distribution. 

............
................. 

.............................................................................. ........................ Suppose there is a +Z point charge at the 
...........
.

.. .............
... 
..............
.. 

............
....

.............
...............

..........
...

..

.... 

center of the uniform spherical charge distribu-
..........
....
.. r0 �� ...............

.. 
...............
............

.....
.. 
.........
......
... � .............

.. tion of radius r0. Suppose also that there are 
........
.....
.... 
........
....
... t 
........
.....
... 

................

...

.............

...

............. Z − 1 electrons in the charge distribution. 
........
.....
.. +Z ...............

... 
.........
......
.. ..............

.. 
..........
.....
.. .............

... For the test charge at r > r0, the test charge 
..........
....
.. 

.........
.......... .. 
....... .... ............ .... ............. .... ............. .... ............. ....

............ ..
.............
..
.............
... 

feels a Coulomb interaction equal to a charge of 
............. .... ............ ................ ..... ........... ..... ........... .... 

+1 at the center of the sphere. 
For r < r0, the test charge sees a larger effective charge. It sees an effective charge 

Zeff = Z − (Z − 1)(r/r0)
3 . 
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Zeff 

+Z 

+1 

6 

-

. .................................................................. ..................................................................
...............................................................

.. 
..............................................

................... 

....................................
............................ 

..............................
..............................

.... 

..........................
..........................

........... 

......................
......................

................... 

...................
...................

...................
..... 

.................
.................

.................
........... 

...............
...............

...............
...............

. 

r0 r 

• e− in inner orbitals shield nuclear charge from e− in outer orbitals. 

• All ns orbitals have amplitude at r = 0. This means that they feel a larger nuclear 
charge than all ` > 0 orbitals because some ns amplitude “penetrates under” the e− 

density in inner orbitals. 

`(`+1)• The 
r

centrifugal barrier keeps e− in high–` orbitals far outside the “ion–core”.2 

High–` orbitals see Zeff = +1 (just like hydrogen). 

• The shielding of the +Z nuclear charge experienced by an electron in the n0`0 orbital 
is expressed by X 

Jn`,n0`0 . 
n`6 0`0=n

This is a sum of repulsions of the n` electron by the electron in the n0`0 orbital. 

• We end up with a value of Zn
eff that depends on which inner orbitals are filled and on0`0 

the value of n0 and `0 . 

This explains why Ens < Enp. 
2 2 6 2This also suggests why, as one goes from Ar [1s , 2s , 2p , 3s , 3p6] to K, the next 

electron goes into 4s rather than 3d. And then Ca is 4s2 rather than 4s 3d or 3d2 . 
But the big surprise is that even though 4s fills before 3d, the electron that is easiest 
to remove from Sc 4s23d and the other transition metals is 4s not 3d. 3d shields the 
nucleus and causes 4s to become less stable because it sees a reduced Zeff . 

How do we improve on the Independent Electron Approximation? 
One could imagine including something analogous to a second–order perturbation theory 

infinite summation. This can’t work because, for many i, j ����� 
(1)

Hij 

Ei 
(0) − Ej 

����� > 1, 

which violates the convergence criterion of non-degenerate perturbation theory. 
We could diagonalize a large b The idea is somehow to build in some kind ofH matrix. 

e− − e− correlation so that problems like regions of ψ where r1 = r2 are eliminated. There 
is a lot of magic in large dimension electronic structure calculations. 
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