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Outline for today: 

I. δ–functions. δ(x, xi) is an eigenstate of x̂ with eigenvalue xi. 

δ–function is a computationally convenient tool, especially convenient for representing 
a barrier on a potential curve or a maximally localized well. Tunneling. 

II. Discrete Variable Representation (DVR). 

How do we construct a matrix representation of a function of a matrix? bDVR allows us to express almost any V (R), x̂ = R − Re, as a matrix, V(xb), expressed 
in the harmonic oscillator basis set. It makes non-degenerate perturbation theory look 
like a Model-T Ford. 

III. Extension of DVR to include rotation. 

IV. We can obtain ψ(x) from experiment after all! But we must do it via the eigenvectors 
and eigen-energies of an effective Hamiltonian. 

I. δ–Functions 

The Dirac δ–function, δ(x, xi) ≡ δ(x − xi), is an extremely useful tool in spectroscopic 
calculations.‡ It has the property Z ∞ 

f(x)δ(x, xi)dx = f(xi). 
−∞ 

‡See CTDL, pages 1468-1472. 
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δ(x, xi) is sharply localized at x = xi. It is also “normalized to 1” in the sense that f(x) is 
returned evaluated at xi without any additional multiplicative factor, c f(xi). 

This Dirac δ–function may be viewed as an eigenfunction of x̂ because it satisfies the 
eigenvalue equation 

x̂δ(x, xi) = xiδ(x, xi). 

This seems strange because we usually regard x̂ as a continuous variable, regardless of 
whether the system we are treating is discrete or continuous in energy, finite or infinite 
in range of x. 

We can also have δ–functions in p̂, δ(p, pi), Z ∞ 

g(p)δ(p, pi)dp = g(pi). 
−∞ 

Transformations 

The set of δ(x, xi) for all xi or δ(p, pi) for all pi may be regarded as a complete set of basis 
functions in which any quantum mechanical state may be expressed, I 

ψj (x) = cx
j 
i 
δ(x − xi)dx 

where cx
j 
i 
is the usual mixing coefficient with which we are familiar for all basis set transfor-

mations X 
ψj(x) = ck

j φk(x) Zk 

ck
j = φk

∗ ψj dx. 

Representations 

There are many mathematical representations of Dirac δ-functions, δ(x): 

1 −|x|/ε(i) lim e
ε→+0 2ε 
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1 ε 
(ii) lim 

ε→+0 π x2 + ε2 

π−1/2 1 −x2/ε2 
(iii) lim e 

ε→+0 ε 

1 sin(x/ε)
(iv) lim 

ε→+0 π x 

ε sin2(x/ε)
(v) lim 

2ε→+0 π x

For δ(x, xi) replace x in the above expressions for δ(x) by x − xi. δ(x) is centered at 
x = 0. δ(x, xi) is centered at xi. 

Properties of δ–functions 

δ(−x) = δ(x) 
1 

δ(cx) = δ(x)
|c|X 

δ[g(x)] = 
j 

��� 1 
dg 
�� ��� δ(x − xj ) where {xj } are the zeroes of g(x). 

dx x=xj 

δ(x) has units of 
x 
1 . 

The Fourier Transform of δ(x) is a delta function in p and vice versa. 

FT of δ(x − x0) = FT δ(x, x0) ≡ δ̄x0 (p)Z ∞ 
ipx0/}δ̄x0 = [2π}]−1/2 e −ipx/}δ(x − x0)dx = [2π}]−1/2 e

−∞ 

and the inverse Fourier transform of δ̄x0 (p) is Z ∞ Z ∞ 

δ(x, x0) = 
1 

eip(x−x0)/}dp =
1 

e ik(x−x0)dk 
2π} 2π−∞ −∞ 

Note that a δ–function in x corresponds to an integral with respect to p over cos[p(x−x0)/}] 
and sin[p(x−x0)/}] and that perfect localization in x corresponds to complete delocalization 
in p. But you already knew this! 
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II. Discrete Variable Representation 

Almost every system with an equilibrium structure “looks like” a harmonic oscillator. Often 
we can use Perturbation Theory to deal with the deviations from harmonic behavior. This 
can be an algebraic nightmare! 

There is an alternative way of dealing with non–harmonic effects that is algebra–free. The 
computer does all of the work. It is based on how one constructs a matrix representation of 
a function of a matrix. For example, how would you compute the square root of a matrix? 
Let A be a real and symmetric matrix. Every real symmetric matrix can be diagonalized by 
a unitary transformation ⎞⎛ 

a1 0 0 0 
0 a2 0 0⎜⎜⎜⎝ 

⎟⎟⎟⎠ 
T†AT = A =e

where 
T† = T−1 . 

The ith eigenvector is the ith column of T† . One can generalize to any Hermitian matrix, B, 

. .0 0 . 0 
0 0 0 aN 

⎞⎛ 
b1 0 0 0 
0 b2 0 0⎜⎜⎜⎝ 

⎟⎟⎟⎠ 
U†BU = e

e

B = 

where all of the {bi} are real. 

If we want to compute some function of the matrix A or B, f(A), one diagonalizes A to 
obtain all of the eigenvalues of A. If A is of infinite dimension, one can truncate A, keeping 
only the Aij elements where 0 ≤ i ≤ 99 and 0 ≤ j ≤ 99; call this A100 . This would be the 
100 × 100 block associated with the 100 smallest Aii diagonal elements of A. 

Now we diagonalize A100 and obtain 100 eigenvalues {ai} 0 < i ≤ 100. 

Next we evaluate the function f at each of the eigenvalues of A100 

f 

. .0 0 . 0 
0 0 0 bN 

⎞⎛ 
f(a1) 0 0 0 
0 f(a2) 0 0 

f 
� e� 

A100 = = 
⎜⎜⎜⎝ 

⎟⎟⎟⎠ 
.. .0 0 . 0 

0 0 0 f(a100) 
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This is trivial. For f(A) = A1/2, we have ⎛ ⎞ 

f̃  A100 
� e� 
= 

⎜⎜⎜⎝ 

1/2 
a 0 0 01 

1/2
0 a 0 02 

. .0 0 . 0 
1/2

0 0 0 a100 

⎟⎟⎟⎠ 
. 

To get f(A100) we need to transform f̃(Ae 100) back to the original representation of A 

f(A100) = Tf(T†A100T)T† f100T† = T˜ . 

It is possible to prove this, but that is not a job for 5.61. 

f100˜ is a diagonal matrix. The T, T† matrices from the unitary diagonalizing transfor-
mation of A100 are already known by your computer. So you can ask the computer to apply 
the reverse transformation to obtain the non–diagonal matrix, f(A100). Wonderful! 

The next step is to do something related to the Harmonic Oscillator and is therefore of 
general usefulness. 

The potential energy function is what distinguishes one oscillator problem from all others. 
We want the matrix representation of V in the Harmonic–Oscillator representation 

V (X). 

But you will initially think, “this is ridiculous because the displacement, X, is a continuous 
variable.” What possible meaning would the first 100 eigenvalues of the matrix X have? 

If the matrix representation of X were chosen to be of infinite dimension, the eigenvectors 
of X would be δ(x − xi) Dirac δ–functions. They would be perfectly localized functions, 
located at each of the eigenvalues of X. Each δ–function would be a linear combination of an 
infinite number of harmonic oscillator eigenfunctions. If X is not of infinite dimension, each 
eigenvector is a sharply localized function, centered at one of the eigenvalues of X. However, 
none of this matters. We can truncate X at whatever dimension we choose and use it to 
construct a finite dimension representation of the potential energy function. 

(1) Choose a harmonic oscillator basis set where X = x − xe and ω = [k/µ]1/2 . It is a good 
idea to use a basis set where the lowest energy minimum of V (x) is at x = xe and 

k = 
d2V 
dx2 

���� . 
x=xe 
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(2) Truncate X at some dimension close to the maximum that your computer can diag-
onalize in an acceptable time. If you are going to want an accurate computation of 
the lowest 100 eigenvalues of X, you will probably want to truncate X at 1000 × 1000, 
X1000 . You know all of the non–zero matrix elements of Xb in the harmonic oscillator 
basis set: only xjj±1 matrix elements are non–zero. 

(3) Diagonalize X1000 . 

X1000 

X1000 

e
e

= T1000†X1000T1000 ⎞⎛ ⎜⎜⎜⎝ 

x1 0 0 0 
0 x2 0 0 ⎟⎟⎟⎠ 

= . .0 0 . 0 
0 0 0 x1000 

thThe eigenvector that corresponds to the n eigenvalue (counting up from the lowest 
value) is ⎞⎛ ⎜⎜⎜⎜⎝

1000†T1,n 
. . . 
. . . 

T1000† 
1000,n 

⎟⎟⎟⎟⎠ 
. 

(4) V (x) is some function of the harmonic oscillator displacement. Evaluate V (xn) at each eV1000value of xn. This is

V1000e . 

(5) Transform back to the harmonic oscillator basis. 

V1000 = T1000Ve 1000T1000† . 

Now we have expressed some arbitrary and possibly evil potential energy as a non– 
diagonal matrix in the harmonic oscillator basis set. 

(6) Express the kinetic energy matrix, � 
K1000 2 = p 2µ 

in the harmonic oscillator basis. This matrix has only non–zero elements K1000 andjj 

K1000 Now we have jj±2. 
H1000 = K1000 + V1000 

and we can diagonalize H1000 . This gives us the eigenvalues and eigenvectors of H1000 . 

(7) We are probably only interested in a subset of these eigenvalues and eigenvectors. We 
need to check for convergence of our calculation for this subset. Repeat the calculation 
using a 10% smaller or larger dimension X matrix, say X900 . If the calculation has 
converged as far as the eigenvalues that you are interested in are concerned, the En for 
1 < n < 100 should agree acceptably for the H1000 and H900 calculations. 
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(8) If you plan to perform more calculations for a family of evil V (x) potential energy 
X1000 Xe 900functions, retain your e , , T1000, and T900 matrices and use them for as many 

problems as you choose! 

III. Extension of DVR to include rotation 

It is possible to extend the DVR treatment to include rotation. 

VJ (X) = V0(X) + B(X)J(J + 1) 

X = x − xe, x = X + xe where x is the internuclear distance � �
2x

B(X) = Be
e 

(X + xe)2 

Thus, once we have diagonalized X we can evaluate VJ (xi) at every eigenvalue of X, then 
transform back to the Harmonic Oscillator basis set. 

We will turn the DVR crank for several values of J , perhaps J = 0, 1, 5, 10, 20, 40, 100. 
We will obtain rotational level energies for each of the vibrational levels. These energies 
would be fitted to the equation 

E(J) = Ev(0) + BvJ(J + 1) − Dv[J(J + 1)]2 . 

Thus obtaining the usual molecular constants Gv, Bv, and Dv for any potential energy curve, 
no matter how pathological. 

IV. Experimental determination of wavefunctions! 

At the beginning of 5.61 I told you that the central concept in the Schrödinger form of 
Quantum Mechanics was never directly observable. Any measurement alters the state of the 
system. 
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But ψ(x) can be determined indirectly by experiment. 

Measure a set of {En}, ideally from the lowest energy up to some convenient stopping 
point. 

Design an effective Hamiltonian, Heff , which is defined by a set of molecular constants. 
These molecular constants are experimentally determined by performing a least squares fit (a 
form of a variational calculation) in which the deviations between the eigenvalues of Heff and 
the experimentally observed {En} are minimized. When the experimental measurements are 
fitted to measurement accuracy, you have determined an Heff that is a faithful representation 
of reality, even though Heff is not of infinite dimension and is only distantly related to the 
exact H. 

The Heff is expressed in some convenient basis set, such as a Harmonic Oscilator basis 
set. The transformation that diagonalizes Heff ⎞⎛ 

E1 0 ⎜⎝ 
⎟⎠T†Heff T = eH = 

0 EN 

gives us the eigenvectors. The columns of T† are the eigenvectors 

. . . 

⎞⎛ ⎜⎝ 

T † 1j 
. . . 

TNj 

⎟⎠|ji = , 

thus XN
Tnj ψ

(0)ψj (x) = n (x), 
n=1 

so we have a wavefunction representation of every eigenstate of Heff . These eigenstates can 
provide a picture of ψj (x) that yields valuable insights, usually through the number and 
organization of nodes or nodal surfaces. 

So we can obtain all of the ψj (x) (indirectly) from experiment after all! 
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