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Numerical Solution to Kinetic Equations 
Lecture 1 

The Problem 
We want to solve 

l H1 dni = �ν rl 
( T n ) − Transport V of out i of Eq.(1) , ' ' 

V dt i 

Where ni is the number of moles of species ‘i’, ν is the matrix of stoichiometric 
coefficients, and 

rl = Rateof Step 'l ' (units: moles/volume-second) 

For a typical bimolecular elementary step reaction A+B = C+D: 

T A B T Crl = k forward ] ][ )[ ( − k ][ )[ ( D]reverse 

For a typical gas-phase dissociation reaction A= C + D: 

, Crl = k ( P T ] )[ − k ( P T ][ )[ D]forward , A reverse 

For a typical gas-phase isomerization reaction A = C: 

, A , Crl = k forward ( P T ] )[ − k ( P T ] )[ reverse 

The rate constants also usually depend (weakly) on the chemical environment (e.g. 
dielectric constant), so they strictly are not really constant but (very weak) functions of 
all the n’s. Note that the forward and reverse rates are normally related by the equilibrium 
constant, related to the free energy of reaction (thermochemistry). 

It is important to appreciate that except in the simplest cases, there is no analytical 
solution to this system of differential equations, so we MUST use the computer to solve 
them numerically. Approximations like quasi-steady-state extend the range of systems 
where analytical (approximate) solutions are possible, but you don’t have to get very 
complicated before even the steady-state-approximation solutions are intractable. 
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More About the Fundamental Equation 
Chemistry textbooks usually give instead of Eq. (1) the equation: 

i d l H 
, 

] [ = �ν rl 
( T n ) Eq.(2) 

dt i 

But Eq.(2) is true only if dV/dt = 0 (“isochoric”) and there is no transport (i.e. perfectly 
homogeneous, no convective flow). These textbook approximations are good for dilute 
reactions in solution or for constant volume apparatus (e.g. bomb calorimeter, shock 
tube). In many important cases the system is isobaric, i.e. dP/dt = 0, so if the temperature 
increases or there is a change in the number of moles of gas V will change. 

It is convenient to express the equation in terms of intensive quantities rather than the 
extensive variables n and V. The intensive variables that work best are mass fractions yι: 

W n i = 
] [


y = i W i i


ρM total 

dy Wi 1
dni 

V dt 
− Transport V of out i of ' ' = 

dt ρ 

You can plug in the same expression as above for the term in parentheses. Note that mole 
fractions xi are not such a good choice for kinetics as mass fractions, since the number of 
moles can change in chemical reactions, but the mass does not. 

However one writes the chemical reaction equations, one must be explicit about the 
model for dT/dt, since the kinetics invariably depends strongly on T. The common 
textbook assumption is isothermal (dT/dt = 0) which is okay if the reaction is very slow 
and the reagents dilute. In many cases of interest the system is closer to being adiabatic, 
so dT/dt is given by energy conservation. (For the energy conservation equation around a 
small control volume with uniform T, P, and composition, and an elementary discussion 
of how ODE’s are solved numerically, see: 
http://web.mit.edu/10.10/www/Study_Guide/DiffEq.html ). Note that to accurately 
compute dT/dt one must have a way of computing the enthalpies and heat capacities of 
all the species at any T. 

Thermochemical Data 
Because one needs the thermochemical data both to compute dT/dt and also to compute 
the reverse reaction rate constants, it is usual to build up a library file containing all this 
data for all the species of interest. For (stupid) historical reasons the data are usually 
represented as the coefficients in a piecewise fitting form known as “the NASA 
polynomials”. For some of the arcane details about NASA polynomials, see the 
CHEMKIN manual and http://www.me.berkeley.edu/gri_mech/data/nasa_plnm.html. 
Beware that there is more than one format for the NASA polynomials! The NIST 
Webbook gives thermochemical data in a different “Shomate” format which is better 
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behaved than the NASA form. The other popular form is the discrete values of Benson 
(used also by THERM and the NIST S&P program) discussed later in the course. All 
forms take advantage of the fact that the T-dependence of the enthalpy and the entropy is 
easily computed (often analytically) from the heat capacity. So the main issues are 
whether one knows H and S exactly at any T for the species of interest and then how well 
the T-dependence of the heat capacity (usually Cp, measured at constant pressure) can be 
determined and represented. Very often S and Cp are calculated using statistical 
mechanics rather than measured, you need to read carefully to determine whether the 
numbers reported in a table are measured or just computed, and if they are computed 
what assumptions were made. The reported S and H are usually for an ‘ideal gas state at 1 
atm at 298 K’, even if the molecules are actually liquids or solids at 298 K and 1 atm. So 
the reported H(298) is often calculated, perhaps from an experimentally measured H at 
some different temperature and the computed heat capacities. 

In many real-world applications of kinetics, the estimated barrier heights of the slow 
steps are strongly correlated with the estimates of their endothermicities, and many of the 
fast reactions are nearly equilibrated. Hence one is more sensitive to uncertainties in the 
thermochemical data than to the (usually much larger) uncertainties in the individual rate 
constants. So a kineticist MUST be concerned about the quality of the thermochemical 
data file employed in the simulations. There is plenty to worry about. For example, in 
2001 it was discovered that the heat of formation of OH was computed incorrectly many 
years ago, and that therefore the many species whose thermochemistry was inferred 
relative to OH were also incorrect. Presumably many similar errors exist in the databases, 
waiting for some bright graduate student to identify them. Note that you will get 
observably different results if you use the default therm.dat file shipped with CHEMKIN 
or the GRI-MECH thermo file. 

Beware: Inhomogeneity can develop Spontaneously 
If dT/dt is nonzero, often gradients will develop in the system even if it was initially 
homogeneous due to heat losses at the boundaries. In some cases these temperature 
gradients can become extreme (e.g. in a flame). Pressure equilibrates at about the speed 
of sound, much faster than species concentration or temperature gradients can equilibrate, 
so very often it is a good approximation that P is uniform in a system. However, in some 
combustion systems the reaction is so fast that significant pressure gradients develop; this 
can cause loud noises or in an extreme cases detonations and other types of explosions. 
These inhomogeneities are reduced by using a smaller control volume; for reacting flow 
simulations people often use control volumes less than a millimeter across so that their 
approximation that the system has a single temperature and composition is accurate. 

Required Inputs 
What inputs do we need for a Kinetic Simulation? 

1) A Thermo File (with data for all the species in the simulation) 
2) Reaction Mechanism: A list of the reactions and forward rate constants 
3) Reaction conditions (e.g. initial concentrations, T, P, timescale, adiabatic or 

isothermal, flow situation, etc.) to fully specify physical situation. 



4)	 Simulation details: Specify outputs required, tolerances, numerical methods, 
initial guesses, etc. 

In CHEMKIN, input 1 is called something like therm.dat and usually resides in the /data/ 
directory, input 2 is called something like chem.inp (and if there is surface chemistry an 
additional file surf.inp), and inputs 3 and 4 are combined in a single file, e.g. aurora.inp. 

How are ODE’s solved numerically? (the short short version) 

If we define Y={yi, T} and there is no transport, then Eq.(1) is of the form: 

dY/dt = F(Y) and we usually know the initial conditions: Y(to)=Yo 

The general procedure is to step forward in time with some formula 

Y(t+∆t) = Y(t) + G(Y) ∆t  Eq.(3)  

where G is our best estimate of the average of F(Y(t’)) over the trajectory from Y(t’=t) to 
Y(t’=t+∆t), using lots of little timesteps ∆t until we reach tfinal. In the simplest 
approximation called Forward (or Explicit) Euler G=F(Y(t)). This turns out to be pretty 
inaccurate (just like the rectangle rule is not a very accurate way to compute numerical 
integrals) and also numerically unstable unless ∆t is very small. The fundamental 
problem is that we don’t know the trajectory Y(t’) – all we can do is extrapolate to 
estimate Y(t’) at future times. The extrapolation at each timestep introduces a little bit of 
error, and then the extrapolation at the next timestep is built on an incorrect starting point 
and an incorrect estimate of the slope G(Y). If one is not careful, the errors can cumulate 
in a very unfavorable way, making the whole procedure numerically unstable (even if the 
ODEs and the physical situation they describe is perfectly stable). 

There are two general ways of coping with this. One is to use relatively simple 
estimates of G and just use tiny timesteps ∆t much smaller than any of the physical 
timescales in the system. This general approach is called “explicit”, the most famous 
algorithms that work this way are called “Runge-Kutta” methods. The alternative 
approach is to use very complicated methods for estimating G that are guaranteed to be 
numerically stable, these are called “implicit” methods because in these methods G is a 
function of Y(t+∆t), so Eq.(3) becomes an implicit (usually) nonlinear system of 
equations, very difficult to solve. The hope is that by improving the numerical stability, 
one could use large ∆t’s and so reduce the number of timesteps required to reach tfinal. 

The difficult aspect of chemical kinetics is that one often has reactive 
intermediates with lifetimes 1012 times shorter than the relatively inert starting materials. 
The short lifetimes of the reactive species force ∆t in the explicit methods to be extremely 
small, so then a huge number of timesteps (and a correspondingly huge amount of CPU 
time) are required before the starting materials are consumed significantly. When the 
range of timescales is very large, the ODE system is called “stiff”. Stiffness introduces 
many numerical problems, even for implicit ODE solvers; several algorithmic tricks must 
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be used simultaneously in order to solve stiff systems without introducing huge numerical 
errors. 

The first algorithm that could correctly handle stiff ODE systems was discovered 
by William Gear in the 1970’s. The best programs now available for solving large stiff 
ODE systems are VODE, DASSL/DASPK, and DAEPACK. I believe the current version 
of CHEMKIN calls VODE and DASSL. 
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