
A Short Summary of Quantum Chemistry  
 
Quantum Chemistry is (typically) based on the non-relativistic Schroedinger equation, 
making the Born-Oppenheimer approximation. The Schroedinger equation is 
 
Htotal Ψtotal = E Ψtotal 
 
Where 
 
E = an allowed energy of the system (the system is usually a molecule). 
Ψtotal = a function of the positions of all the electrons and nuclei and their spins. 
Htotal = a differential operator constructed from the classical Hamiltonian H(p,q) = E by 
replacing all the momenta pi with (h/2πi) ∂/∂qi  as long as all the p and q are Cartesian. If 
you would prefer to use a non-Cartesian coordinate system it is tricky to construct the 
correct quantum mechanical H. The standard way to make Hamiltonians for arbitrary 
coordinate systems is to use the “Podolsky trick”. For a system of nuclei and electrons in 
a vacuum with no external fields, neglecting magnetic interactions, using atomic units: 
 
Htotal = - ½ Σ ∇i

2/Mi  - ½ Σ ∇n
2 + Σ ZiZj/|Ri-Rj| - Σ Zi/|Ri-rn| + Σ 1/|rm-rn| 

 
 
The Born-Oppenheimer approximation is to neglect some of the terms coupling 
the electrons and nuclei, so one can write: 
 
Ψtotal (R,r) = Ψnuclei(R)Ψelectrons(r; R) 
 
Htotal ≅ Tnuclei(P,R) + Helectrons(p,r;R)    
 (ignores the dependence of Helectrons on the momenta of the nuclei P) 
 
then solve the Schroedinger equation for the electrons (with the nuclei fixed). The energy 
we compute will depend on the positions R of those fixed nuclei, call it V(R): 
 
Helectons(p,r;R) Ψelectrons(r; R) = V(R) Ψelectrons(r; R) 
 
Now we go back to the total Hamiltonian, and integrate over all the electron positions r, 
ignoring any inconvenient terms, to obtain an approximate Schroedinger equation for the 
nuclei: 
 
<Ψelectrons(r; R) |Htotal|Ψelectrons(r; R)> ≅ Hnuclei = Tnuclei(P,R) + V(R) 
 
Both approximate Schroedinger equations are still much too hard to solve exactly 
(they are partial differential equations in 3Nparticles coordinates), so we have to 
make more approximations. Vnuclei is usually expanded to second order R about a 
stationary point Ro: 
 
Vnuclei  ≅ Vnuclei(Ro) + ½ Σ(∂2V/∂Ri∂Rj) (Ri-Roi)(Rj-Roj) 



 
and then the translations, rotations, and vibrations are each treated separately, 
neglecting any inconvenient terms that couple the different coordinates. In this 
famous “rigid-rotor-harmonic-oscillator (RRHO)” approximation, analytical 
formulas are known for the energy eigenvalues, and for the corresponding 
partition functions Q, look in any P.Chem. text.  
 
This approximate approach has the important advantage that we do not need to 
solve the Schroedinger equation for the electrons at very many R’s: we just need 
to find a stationary point Ro, and compute the energy and the second derivatives 
at that Ro. Many computer programs have been written that allow one to compute 
the first and second derivatives of V almost as quickly as you can compute V. For 
example, for the biggest calculation called for in problem 3 with 10 atoms and 
3*10=30 coordinates Ri, it takes about half a minute on an Athena machine to 
compute Vnuclei(Ro) and only about 13 more minutes to compute the 30*30=900 
second derivatives (∂2V/∂Ri∂Rj). If you tried to do this naively by finite differences, 
it would take about 15 hours to arrive at the same result (and it would probably 
be less accurate because of finite differencing numerical errors.) The analytical 
first derivatives are used to speed the search for the stationary point (e.g. the 
equilibrium geometry) Ro. Often the geometry and the second derivatives are 
calculated using certain approximations, but the final energy V(Ro) is computed 
more accurately (since thermo and rates are most sensitive to errors in V(Ro), 
and even poor approximations often get geometry and frequencies close to 
correct). 
 
So… as long as a second-order Taylor expansion approximation for V is 
adequate we are in pretty good shape. Molecules and transition states with “large 
amplitude motions” (i.e. the Taylor expansion is not adequate) are much more 
problematic, dealing with them is an active research area. Fortunately, there are 
many systems where the conventional second-order V, RRHO approximation is 
accurate. 
 
But how do we compute V(R) at any geometry R? We want to solve 
 
Helectons(p,r;R) Ψelectrons(r; R) = V(R) Ψelectrons(r; R) 
 
where in a vacuum, in the absence of fields, and neglecting magnetic effects 
 
Helectrons (R)= - ½ Σ ∇n

2 + Σ ZiZj/|Ri-Rj| - Σ Zi/|Ri-rn| + Σ 1/|rm-rn| 
 
and because the electrons are indistinguishable Fermions any permutation of two 
electrons must change the sign of Ψelectrons (this is a really important constraint called the 
Pauli exclusion principle, it is the reason for the periodic table) and because spin is a 
good quantum number we have more constraints: 
 
S2 |Ψelectrons > = S (S+1) |Ψelectrons> 



Sz |Ψelectrons > = M |Ψelectrons> 
 
We can write Ψelectrons in a form that will guarantee it satisfies Pauli: 
Ψelectrons(x1,x2,x3,…xN)= Σ Cm1m2m3…mN |φ m1(x1)φ m2(x2)φ m3(x3)… φ mN(xN)| 
where the symbol |….| means to construct the correctly antisymmetrized “Slater 
determinant”. The “molecular orbitals” φ m(x1) are scalar functions of the position and 
spin coordinates of one electron. They are usually written as a sum of “atomic orbitals” χ: 
 
φ m(x,y,z,s) = |sz> Σ Dmn χn(x,y,z)  
 
The atomic orbitals are almost always taken to have the form of sums of Gaussians 
centered on one of the atoms times a polynomial in the electron coordinates relative to 
that atom: 
 
χn(r) = Σ Nnl exp (- αnl(|r-Ri(n)|2) Pl(r- Ri(n) ) 
 
There are conventional sets of these atomic orbitals that are used, that cover the 
polynomials up to a certain order with certain choices of α; these are called “basis sets” 
and are given names like “6-31G*” , “TZ2P”, and “cc-pVQZ”. The general procedure is 
to pick one of these basis sets, and then to vary the C’s and the D’s to try to find an 
approximate Ψelectrons that solves the Schroedinger equation as closely as possible. If your 
basis set has a very good overlap with the true , you will be able to achieve good 
accuracy only varying a few C’s and D’s. If not,  
 
There is a very nice variational theorem that says that you can compute the E 
corresponding to any approximate Ψelectrons by just evaluating a (very difficult 
multidimensional) integral, and that the one that returns the lowest E is best. So the 
problem is just to vary the C’s and D’s to minimize 
 
E[Ψ] = E(C,D) = <Ψelectrons |Helectrons|Ψelectrons >/<Ψelectrons |Ψelectrons > 
 
The evaluation of the integral requires O(Nbasis

3) operations. (Gaussian functions are used 
because they allow the integrals to be computed analytically.) Typically your basis set 
might include 15 atomic orbitals for each atom (except H atoms which doesn’t need so 
many) and you would vary the (15*Natoms)2 coefficients Dmn. The number of possible 
coefficients C is much larger, something like Nbasis raised to the Nelectrons power, so it is 
almost always impossible to do anything with the complete expansion. Often people 
don’t bother to vary the C’s, or only allow a small fraction of the C’s to vary 
independently, to reduce the number of parameters. By allowing the C’s to vary, you are 
allowing to account for the fact that the different electrons are correlated with each other: 
when one is close to the nucleus the others are likely to be far away. 
 
The fundamental problem is that we are trying to approximate a function of 3*Nelectrons 
variables. To beat this, people have come up with “Density Functional Theory (DFT)” 
where an approximate functional of the electron density (a function of only 3 variables) is 
used instead of a functional of the wavefunction Ψ. This functional intrinsically picks up 



some of the largest contributions from electron correlation. In the most popular variety of 
DFT, you end up with equations that look almost the same as those but without any 
variable C’s, so you just have to vary the D’s to minimize the value of the functional: 
 
E[ρ] = E(D) 
 
DFT calculations are usually inexpensive; their accuracy is fundamentally limited by the 
fact that the E[ρ] used is approximate. But with modern functionals they are pretty 
accurate (typical errors ~4 kcal/mole). Recently Kohn won the Nobel Prize for inventing 
DFT. 
 
 The approximations all have names, here is a glossary: 
 
Semi-empirical (MOPAC, MNDO, AM1, PM3): vary the D’s, but just use empirical 
estimates rather than the true integrals. Very cheap, but only accurate for molecule 
similar to those used to develop the empirical estimates. 
 
DFT (B3LYP,  BLYP, PW91): slightly empirical, but much more reliable than semi-
empirical methods. CPU: cheap, same as HF O(N3). Errors ~ 4 kcal/mole (comparable 
accuracy to MP2 but much cheaper). Preferred method for geometries, second 
derivatives, first try at V(Ro). 
 
HF (aka Hartree-Fock, SCF):  only one C non-zero, vary the D’s 
 CPU: cheap O(N3)   errors ~15 kcal/mole 
 
MP2, MP4 (aka Moller-Plesset, MBPT): Vary the D’s first, then set the C’s to the values 
given by perturbation theory (you don’t freely vary these C’s, saving CPU). 
 MP2: medium CPU: O(N5),   errors ~5 kcal/mole 
 
CI, CISD (Configuration Interaction): Vary the D’s first, freeze them, then vary a lot of 
the C’s. 
 Expensive. Not used much anymore, CCSD is preferred. 
 
MCSCF, CASSCF: vary a finite set of C’s and all the D’s simultaneously. 

Expensive. Good for understanding cases where several electronic states have 
comparable energies. User expertise required to select which C’s to vary. 

 
CAS-PT2: Determine the D’s and some C’s by CASSCF, then determine more C’s by 
perturbation theory. 
 Not much more expensive than CASSCF. Sometimes very good, but not reliable. 
 
MRCI (multi reference CI): Determine the D’s and some C’s by CASSCF or MCSCF, 
freeze these, then allow many of the C’s to vary. 
 Super expensive. Very high accuracy for small systems. 
 



CCSD, CCSD(T), QCISD (Coupled Cluster): Vary the D’s, fix them, then vary a lot of 
the C’s, but constraining certain relationships between the C’s. This allows you to 
effectively use a longer expansion without increasing the number of adjustable 
parameters so much. The constraints force the solution to be “size-consistent”, i.e. two 
molecules calculated simultaneously have exactly the same energy as two molecules 
calculated separately. 
 Expensive. Often very accurate. 
 
Extrapolations (“Composite Methods”): G2, G3, CBS-q, CBS-Q, CBS-QB3, CBS-RAD 
 Run a series of the above calculations with different size basis sets, following 
some recipe. The results from all these calculations are extrapolated to an estimate of the 
true V(R). These methods give excellent accuracy in less CPU time than CCSD or MRCI. 
However, the multiple steps involved provide many opportunities for something to go 
wrong. Currently my favorite method is CBS-QB3, but I am waiting eagerly for the next 
generation of CBS methods to come out of Petersson’s group at Wesleyan. 
Accuracy: usually 1-2 kcal/mole 
 
 
Notation  
 
Method1/basis set 1 //  method2/ basis set 2 
 
This means “I computed the geometry using method 2 and basis set 2, and then I 
computed the energy at this geometry using method 1 and basis set 1.” If there is 
no explanation, the second derivative calculations also come from method 2 
using basis set 2.  
 
When you explain what you have done, you must always specify both the 
method (e.g. B3LYP, MP2, CCSD(T) ) and the basis set used. This is enough 
information that anyone else in the world should be able to repeat your 
calculation and get exactly the same results. 
 
 
Isodesmic reactions 
 
 As you can see, there are many approximations in these calculations 
which cause the results to differ from experiment, and the absolute energies 
computed are often seriously wrong. However, differences between similar 
molecules are computed much more accurately than the absolute energies. So if 
you want a good enthalpy for a species X, do it this way: 
 
1) find a reaction X+A = B+C  where the enthalpies of A,B,C are well known, and 
where the reactants and products are very similar (e.g. same numbers of each 
type of chemical bond). The more similar you can make both sides of the 
reaction, the better accuracy you will get, ideally the heat of reaction will be zero. 
 



2) Compute the energies at the equilibrium geometries of X,A,B,C using the 
same quantum chemical method and basis set. From this compute the 
theoretical ∆Hrxn. 
 
3) ∆Hf(X)isodesmic = Hf(B)expt + Hf(C)expt − ∆Hf(A)expt - ∆Hrxntheor 
 
Unfortunately, it is difficult to use the same approach to improve the accuracy of 
transition state energies, since you seldom have well-known systems to compare with. 
 
Some Warnings 
 

1) The optimization (SCF/HF/DFT/CASSCF/MRSCF) problem required to solve for 
the D’s is nonlinear and has multiple solutions, only one of which is the one you 
want (usually you want the lowest energy solution). So you may end up 
converging to a wavefunction which is qualitatively incorrect, perhaps it 
corresponds to an electronically excited state. There are some tools in Gaussian to 
help you figure out if this has happened. 

2) Most of the quantum chemistry methods have problems (convergence, accuracy) 
with systems where there are low-lying electronic states (close to the ground 
state). In these cases, sometimes the numbers computed are completely nuts, other 
times they are subtly wrong. This is particularly a problem for transition states 
and where there are several lone pair electrons in the system. If you must study 
these systems, get expert assistance. 

3) Many molecules have multiple geometrical conformations (local minima in 
V(R)), and sometimes there are multiple saddle points that might be confused 
with the TS. Look at your structures, if they are not what you expected, 
investigate. Also, it is worth some effort to make sure your initial guess at the 
molecular geometry is quite good, otherwise the geometry-optimization algorithm 
may get lost and waste a lot of CPU time to no avail. If you are having troubles, 
you can constrain some of the coordinates to make things easier for the optimizer. 

4) For radicals and other open-shell systems, compare your computed solutions <S2> 
with the theoretical value S(S+1). If your number is way off, chances are you 
have other problems as well. Sometimes you can use “restricted” methods like 
ROHF and RMP2, or spin-projection methods to fix this “spin-contamination” 
problem. 

5) Every method runs into problems sometimes, and sometimes they are quite subtle. 
It is a good idea to double check your calculation with another calculation done 
using a very different method. If they both agree you can be pretty confident that 
your result is real. 

 
 


