
Chapter 1 

Stochastic Processes and Brownian 
Motion 

Equilibrium thermodynamics and statistical mechanics are widely considered to be core subject 
matter for any practicing chemist [1]. There are plenty of reasons for this: 

•	 A great many chemical phenomena encountered in the laboratory are well described by equi
librium thermodynamics. 

•	 The physics of chemical systems at equilibrium is generally well understood and mathemati
cally tractable. 

•	 Equilibrium thermodynamics motivates our thinking and understanding about chemistry 
away from equilibrium. 

This last point, however, raises a serious question: how well does equilibrium thermodynamics really 
motivate our understanding of nonequilibrium phenomena? Is it reasonable for an organometallic 
chemist to analyze a catalytic cycle in terms of rate-law kinetics, or for a biochemist to treat the 
concentration of a solute in an organelle as a bulk mixture of compounds? Under many circum
stances, equilibrium thermodynamics suffices, but a growing number of outstanding problems in 
chemistry – from electron transfer in light-harvesting complexes to the chemical mechanisms behind 
immune system response– concern processes that are fundamentally out of equilibrium. 

This course endeavors to introduce the key ideas that have been developed over the last century to 
describe nonequilibrium phenomena. These ideas are almost invariably founded upon a statistical 
description of matter, as in the equilibrium case. However, since nonequilibrium phenomena con
tain a more explicit time-dependence than their equilibrium counterparts (consider, for example, 
the decay of an NMR signal or the progress of a reaction), the probabilistic tools we develop will 
require some time-dependence as well. 

In this chapter, we consider systems whose behavior is inherently nondeterministic, or stochas
tic, and we establish methods for describing the probability of finding the system in a particular 
state at a specified time. 
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1.1 Markov Processes 

1.1.1 Probability Distributions and Transitions 

Suppose that an arbitrary system of interest can be in any one of N distinct states. The system 
could be a protein exploring different conformational states; or a pair of molecules oscillating be
tween a “reactants” state and a “products” state; or any system that can sample different states 
over time. Note here that N is finite, that is, the available states are discretized. In general, we 
could consider systems with a continuous set of available states (and we will do so in section 1.3), 
but for now we will confine ourselves to the case of a finite number of available states. In keeping 
with our discretization scheme, we will also (again, for now) consider the time evolution of the 
system in terms of discrete timesteps rather than a continuous time variable. 

Let the system be in some unknown state m at timestep s, and suppose we’re interested in the 
probability of finding the system in a specific state n, possibly but not necessarily the same as state 
m, at the next timestep s + 1. We will denote this probability by 

P (n, s + 1) 

If we had knowledge of m, then this probability could be described as the probability of the system 
being in state n at timestep s +1 given that the system was in state m at timestep s. Probabilities 
of this form are known as conditional probabilities, and we will denote this conditional probability 
by 

Q(m, s | n, s + 1) 

In many situations of physical interest, the probability of a transition from state m to state n is 
time-independent, depending only on the nature of m and n, and so we drop the timestep arguments 
to simplify the notation, 

Q(m, s | n, s + 1) ≡ Q(m, n) 

This observation may seem contradictory, because we are interested in the time-dependent proba
bility of observing a system in a state n while also claiming that the transition probability described 
above is time-independent. But there is no contradiction here, because the transition probability Q 
– a conditional probability – is a different quantity from the time-dependent probability P we are 
interested in. In fact, we can express P (n, s+1) in terms of Q(m, n) and other quantities as follows: 

Since we don’t know the current state m of the system, we consider all possible states m and 
multiply the probability that the system is in state m at timestep s by the probability of the 
system being in state n at timestep s+1 given that it is in state m at timestep s. Summing over 
all possible states m gives P (n, s1) at timestep s + 1 in terms of the corresponding probabilities 
at timestep s. 

Mathematically, this formulation reads ∑ 
P (n, s + 1) = P (m, s)Q(m, n) (1.1) 

m 

We’ve made some progress towards a practical method of finding P (n, s+1), but the current formu
lation Eq.(1.1) requires knowledge of both the transition probabilities Q(m, n) and the probabilities 
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3 Chapter 1. Stochastic Processes and Brownian Motion 

P (m, s) for all states m. Unfortunately, P (m, s) is just as much a mystery to us as P (n, s + 1). 
What we usually know and control in experiments are the initial conditions; that is, if we prepare 
the system in state k at timestep s = 0, then we know that P (k, 0) = 1 and P (n, 0) = 0 for all 
n ̸ So how do we express P (n, s + 1) in terms of the initial conditions of the experiment? = k. 

We can proceed inductively: if we can write P (n, s + 1) in terms of P (m, s), then we can also 
write P (m, s) in terms of P (l, s − 1) by the same approach: ∑ 

P (n, s + 1) = P (l, s − 1)Q(l, m)Q(m, n) (1.2) 
l,m 

Note that Q has two parameters, each of which can take on N possible values. Consequently we 
may choose to write Q as an N ×N matrix Q with matrix elements (Q)mn = Q(m, n). Rearranging 
the sums in Eq.(1.2) in the following manner, ∑ ∑ 

P (n, s + 1) = P (l, s − 1) Q(l, m)Q(m, n) (1.3) 
l m 

we recognize the sum over m as the definition of a matrix product, ∑ 
(Q)lm(Q)mn = (Q2)ln (1.4) 

m 

Hence, Eq.(1.2) can be recast as ∑ 
P (n, s + 1) = P (l, s − 1)(Q2)ln (1.5) 

l 

This process can be continued inductively until P (n, s + 1) is written fully in terms of initial 
conditions. The final result is: ∑ 

P (n, s + 1) = P (m, 0)(Qs+1)mn (1.6) 
m 

= P (k, 0)(Qs+1)mn (1.7) 

where k is the known initial state of the system (all other m do not contribute to the sum since 
P (m, 0) = ̸ k). Any process that can be described in this manner is called a Markov0 for m = 
process, and the sequence of events comprising the process is called a Markov chain. 

A more rigorous discussion of the origins and nature of Markov processes may be found in, e.g., de 
Groot and Mazur [2]. 

1.1.2 The Transition Probability Matrix 

We now consider some important properties of the transition probability matrix Q. By virtue of 
its definition, Q is not necessarily Hermitian: if it were Hermitian, every conceivable transition 
between states would have to have the same forward and backward probability, which is often not 
the case. 

Example: Consider a chemical system that can exist in either a reactant state A or a product state 
B, with forward reaction probability p and backward reaction probability q = 1 − p, 

p
A � B 

q 
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4 Chapter 1. Stochastic Processes and Brownian Motion 

The transition probability matrix Q for this system is the 2 × 2 matrix 

Q =

(
q p 
q p

) 

To construct this matrix, we first observe that the given probabilities directly describe the off-diagonal el
ements QAB and QBA; then we invoke conservation of probability. For example, if the system is in the 
reactant state A, it can only stay in A or react to form product B; there are no other possible outcomes, so 
we must have QAA +QAB = 1. This forces the value 1−p = q upon QAA, and a similar argument yields QBB . 

Clearly this matrix is not symmetric, hence it is not Hermitian either, thus demonstrating our first gen
eral observation about Q. 

The non-Hermiticity of Q implies also that its eigenvalues λi are not necessarily real-valued. Nev
ertheless, Q yields two sets of eigenvectors, a left set χi and a right set ϕi, which satisfy the 
relations 

χiQ = λiχi (1.8) 

Q ϕi = λiϕi (1.9) 

The left- and right-eigenvectors of Q are orthonormal, 

⟨χi|ϕj ⟩ = δij (1.10) 

and they form a complete set, hence there is a resolution of the identity of the form ∑
 
|ϕi⟩ ⟨χi| = 1 (1.11) 

i ∑
 
Conservation of probability further restricts the elements of Q to be nonnegative with Qmn = 1. n 
It can be shown that this condition guarantees that all eigenvalues of Q are bounded by the unit 
circle in the complex plane, 

|λi| ≤ 1, ∀i (1.12) 

Proof of Eq.(1.12): The ith eigenvalue of Q satisfies ∑ 
λiϕi(n) = Qnmϕi(m) 

m 

for each n. Take the absolute value of this relation, 

|λiϕi(n)| =

     ∑ 
Qnmϕi(m)

m 

     
Now we can apply the triangle inequality to the right hand side of the equation:     ∑ 

Qnmϕi(m)

     ∑ 
≤ |Qnmϕi(m)|

m m 

Also, since all elements of Q are nonnegative, ∑ 
|λiϕi(n)| ≤ Qnm |ϕi(m)|

m 

5.72, Spring 2008 J. Cao
 



5 Chapter 1. Stochastic Processes and Brownian Motion 

Now, the ϕi(n) are finite, so there must be some constant c such that 

|ϕi(n)| ≤ c 

for all n. Then our triangle inequality relation reads ∑ 
c |λi| ≤ c Qnm 

m ∑ 
Finally, since Qnm = 1, we have the desired result, 

m 

|λi| ≤ 1 

Another key feature of the transition probability matrix Q is the following claim, which is intimately 
connected with the notion of an equilibrium state: 

Q always has the eigenvalue λ = 1 (1.13) 

Proof of Eq.(1.13): We refer now to the left eigenvectors of Q: a given left eigenvector χi satisfies 

χi(n)λi = 
∑ 

χi(m)Qmn 

m 

Summing over n, we find ∑ 
χi(n)λi = 

∑ ∑ 
χi(m)Qmn = 

∑ 
χi(m) 

∑ 
n n m m 

since Qnm = 1. Thus, we have the following secular equation: 
m ∑ 

(λi − 1) χi(n) = 0 
n 

Clearly, λ = 1 is one of the eigenvalues satisfying this equation. 

The decomposition of the secular equation in the preceding proof has a direct physical interpre∑ 
tation: the eigenvalue λ1 = 1 has a corresponding eigenvector which satisfies χ1(n) = 1; this n 
stationary-state eigensolution corresponds to the steady state of a system χ1(n) = Pst(n). It then 
follows from the normalization condition that ϕ1(n) = 1. The remaining eigenvalues |λj | < 1 each ∑ 
satisfy χj (n) = 0 and hence correspond to zero-sum fluctuations about the equilibrium state. n 

In light of these properties of Q, we can define the time-dependent evolution of a system in terms 
of the eigenstates of Q; this representation is termed the spectral decomposition of P (n, s) (the set 
of eigenvalues of a matrix is also known as the spectrum of that matrix). In the basis of left and 
right eigenvectors of Q, the probability of being in state n at timestep s, given the initial state as 
n0, is ∑ 

P (n, s) = ⟨n0|Qs|n⟩ = ⟨n0|ϕi⟩λsi ⟨χi|n⟩ (1.14) 
i 

If we (arbitrarily) assign the stationary state to i = 1, we have λ1 = 1 and χ1 = Pst, where Pst is 
the steady-state or equilibrium probability distribution. Thus, ∑ 

P (n, s) = Pst(n) + ϕi(n0)λ
s
i χi(n) (1.15) 

i̸=1 
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6 Chapter 1. Stochastic Processes and Brownian Motion 

The spectral decomposition proves to be quite useful in the analysis of more complicated proba
bility distributions, especially those that have sufficiently many states as to require computational 
analysis. 

Example: Consider a system which has three states with transition probabilities as illustrated in Figure 
1.1. Notice that counterclockwise and clockwise transitions have differing probabilities, which allows this 
system to exhibit a net current or flux. Also, suppose that p + q = 1 so that the system must switch states 
at every timestep. 

Figure 1.1: A simple three-state system with nonzero flux 

The transition probability matrix for this system is   
0 p q 

Q =  q 0 p  

p q 0 

To determine P (s), we find the eigenvalues and eigenvectors of this matrix and use the spectral decomposition, 
Eq.(1.14). The secular equation is 

Det(Q − λI) = 0 

and its roots are √1 1 
λ1 = 1 , λ± = − ± 3(4pq − 1)

2 2 

1Notice that the nonequilibrium eigenvalues are complex unless p = q = , which corresponds to the case of 2 
vanishing net flux. If there is a net flux, these complex eigenvalues introduce an oscillatory behavior to P (s). 

1In the special case p = q = , the matrix Q is symmetric, so the left and right eigenvectors are identi2 
cal, 

1 √T = 1χ1 = ϕ (1, 1, 1)
3 
1 √T = 2χ2 = ϕ (1, 1, −2)
6 
1 √T = 3χ3 = ϕ (1, −1, 0)
2 

where T denotes transposition. Suppose the initial state is given as state 1, and we’re interested in the 
probability of being in state 3 at timestep s, P1-3(s). According to the spectral decomposition formula 
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7 Chapter 1. Stochastic Processes and Brownian Motion 

Eq.(1.14), ∑ 
P1-3(s) = ϕi(1)λ

s
i χi(3) 

i( ) (
(1s) 

)
1 1 √√= 
3 3 (

( 

)
) 

(
(

) (s 

) ( 

)
) 

1 √ 
1 1 √− (−2)(1)+ 
26 6 

s
1 1 1 √ √−(1) (0)+ 

22 2 (
1 
2 

)s
1 1 

P1-3(s) = 
3 
− 

3 
− 

Note that in the evaluation of each term, the first element of each left eigenvector χ and the third element of 
each right eigenvector ϕ was used, since we’re interested in the transition from state 1 to state 3. Figure 1.2 

1is a plot of P1-3(s); it shows that the probability oscillates about the equilibrium value of , approaching 3 

the equilibrium value asymptotically. 

Figure 1.2: Probability of a transition from state 1 to state 3 vs. number of timesteps. Black points 
correspond to actual timesteps; grey points have been interpolated to emphasize the oscillatory nature of 
P (s). 

1.1.3 Detailed Balance 

Our last topic of consideration within the subject of Markov processes is the notion of detailed 
balance, which is probably already somewhat familiar from elementary kinetics. Formally, a Markov 
process with transition probability matrix Q satisfies detailed balance if the following condition 
holds: 

Pst(n)Qnm = Pst(m)Qmn (1.16) 

And this steady state defines the equilibrium distribution: 

Peq(n) = Pst(n) = lim P (n, t) 
t→∞ 
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8 Chapter 1. Stochastic Processes and Brownian Motion 

This relation generalizes the notion of detailed balance from simple kinetics that the rates of for
ward and backward processes at equilibrium should be equal: here, instead of considering only a 
reactant state and a product state, we require that all pairs of states be related by Eq.(1.16). 

Note also that this detailed balance condition is more general than merely requiring that Q be 
symmetric, as the simpler definition from elementary kinetics would imply. However, if a system 
obeys detailed balance, we can describe it using a symmetric matrix via the following transforma
tion: let √ 

Vnm = 
Pst(n)√ 
Pst(m) 

Qnm (1.17) 

√ 
˜If we make the substitution P (n, s) = Pst(n) · P (n, s), some manipulation using equations (1.1) 

and (1.17) yields 
dP̃ (n, t) ∑ 

˜= P (m, t)Vmn (1.18)
dt 

m 

dP̃ (n,s)The derivative here is really the finite difference P̃ (n, s+1)−P̃ (n, s) since we are considering dt 
discrete-time Markov processes, but we have introduced the derivative notation for comparison of 
this formula to later results for continuous-time systems. 

As we did for Q, we can set up an eigensystem for V, which yields a spectral decomposition 
similar to that of Q with the exception that the left and right eigenvectors ψ of V are identical 
since V is symmetric; in other words, ⟨ψi|ψj ⟩ = δij . Furthermore, it can be shown that all eigen
values not corresponding to the equilibrium state are either negative or zero; in particular, they 
are real. The eigenvectors of V are related to the left and right eigenvectors of Q by √1 |ϕi⟩ = √ |ψi⟩ and ⟨χi| = Pst⟨ψi| (1.19)

Pst 

Example: Our final model Markovian system is a linear three-state chain (Figure 1.3) in which the system 
must pass through the middle state in order to get from either end of the chain to the other. Again we 
require that p + q = 1. From this information, we can construct Q,   

q p 0 
Q =  q 0 p  

0 q p 

Notice how the difference between the three-site linear chain and the three-site ring of the previous example 
is manifest in the structure of Q, particularly in the direction of the zero diagonal. This structural difference 
carries through to general N -site chains and rings. 

To determine the equilibrium probability distribution Pst for this system, one could multiply Q by itself 
many times over and hope to find an analytic formula for lims-o Q

s; however, a less tedious and more 
intuitive approach is the following: 

Noticing that the system cannot stay in state 2 at time s if it is already in state 2 at time s − 1, we conclude 
that P (1, s + 2) depends only on P (1, s) and P (3, s). Also, the conditional probabilities P (1, s +2 | 1, s) and 

2 2P (1, s + 2 | 3, s) are both equal to q . Likewise, P (3, s + 2 | 1, s) and P (3, s + 2 | 3, s) are both equal to p . 
Finally, if the system is in state 2 at time s, it can only get back to state 2 at time s + 2 by passing through 
either state 1 or state 3 at time s + 1. The probability of either of these occurrences is pq. 
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9 Chapter 1. Stochastic Processes and Brownian Motion 

Figure 1.3: A three-state system in which sites are no longer identical 

2 2So the ratio Pst(1) : Pst(2) : Pst(3) in the equilibrium limit is q : qp : p . We merely have to normal
2ize these probabilities by noting that q + qp + p2 = (q + p)2 − qp = 1 −qp. Thus, the equilibrium distribution 

is 
2P (s) = 

1
(q , qp, p 2)

1 − qp 

Plugging each pair of states into the detailed balance condition, we verify that this system satisfies detailed 
balance, and hence all of its eigenvalues are real, even though Q is not symmetric. 

1.2 Master Equations 

1.2.1 Motivation and Derivation 

The techniques developed in the basic theory of Markov processes are widely applicable, but there 
are of course many instances in which the discretization of time is either inconvenient or completely 
unphysical. In such instances, a master equation (more humbly referred to as a rate equation) may 
provide a continuous-time description of the system that is in keeping with all of our results about 
stochastic processes. 

To formalize the connection between the discrete and continuous formulations, we consider the 
probability Eq.(1.1) in the limit of small timesteps. Let t = s∆; Eq.(1.1) then reads ∑ 

P (n, s + 1) = P (m, s)Qmn(∆) (1.20) 
m∑ 

Pn(t +∆) = Pm(t)Qmn(∆) (1.21) 
m 

Here we have switched the labeling of the state whose probability we’re interested in from an 
argument of P to a subscript; this notation is more common in the literature when used in Master 
equations. The Master equation is the small-∆ limit of Eq.(1.21); in this limit, we can treat the 
dependence of Q on ∆ as a linear dependence, i.e. a Taylor expansion to first order, with the 
constant term set to zero since the system can’t evolve without the passage of time:  

∆, m ≠ n Wmn∑
Qmn(∆) = 1 − m = n Wmk∆, 

k 

Then in the limit ∆ → 0, one can verify that Eq.(1.21) becomes 

dPn(t) 
dt 

= 
∑ 

(Pm(t)Wmn − Pn(t)Wnm) (1.22) 
m 
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10 Chapter 1. Stochastic Processes and Brownian Motion 

Figure 1.4: Infinite lattice with transition rate k between all contiguous states 

Eq.(1.22) is a master equation. As the derivation suggests, W plays the role of a transition proba
bility matrix in this formulation. You may notice that the master equation looks structurally very 
similar to rate equations in elementary kinetics; in fact, the master equation is a generalization of 
such rate equations, and the derivation above provides some formal justification for the rules we 
learn in kinetics for writing them down. The matrix W is analogous to the set of rate constants 
indicating the relative rates of reaction between species in the system, and the probabilities Pn are 
analogous to the relative concentrations of these species. 

Example: Consider a random walk on a one-dimensional infinite lattice (see Figure 1.4). As indicated 
in the figure, the transition probability between a lattice point and either adjacent lattice point is k, and all 
other transition probabilities are zero (in other words, the system cannot “hop” over a lattice point without 
first occupying it). We can write down a master equation to describe the flow of probability among the lattice 
sites in a manner analogous to writing down a rate law. For any given site n on the lattice, probability can 
flow into n from either site n − 1 or site n + 1, and both of these occur at rate k; likewise, probability can 
flow out of state n to either site n + 1 or site n − 1, both of which also happen at rate k. Hence, the master 
equation for all sites n on the lattice is 

Ṗn = k (Pn+1 + Pn−1 − 2Pn) 

Now we define the average site of occupation as a sum over all sites, weighted by the probability of occupation 
at each site, 

o∑ 
n̄ = nPn(t) 

n=−o 

Then we can compute, for example, how this average site evolves with time, 

o∑ 
nṖn(t) = ṅ̄ = 0 

n=−o 

Hence the average site of occupation does not change over time in this model, so if we choose the initial 
distribution to satisfy n̄ = 0, then this will always be the average site of occupation. 

2However, the mean square displacement n̄ is not constant; in keeping with our physical interpretation 
of the model, the mean square displacement increases with time. In particular, 

o∑ 
n 2Ṗn(t) = ṅ̄2 = 2k 

n=−o 

If the initial probability distribution is a delta function on site 0, Pn(0) = δ0, then it turns out that Fourier 
analysis provides a route towards a closed-form expression for the long-time limit of Pn(t): ∫ 2�1 inz −2k(1−cos z)t dzPn(t) = e e 

2π 0 ∫ ( )o 2 z t1 inz −2D 2lim Pn(t) = e e dz 
t-o 2π −o 
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11 Chapter 1. Stochastic Processes and Brownian Motion 

√ 
21 

4Dt lim Pn(t) = e − n 

t-o 4πDt 

In the above manipulations, we have replaced k with the diffusion constant D, the long-time limit of the rate 
constant (in this case, the two are identical). Thus the probability distribution for occupying the various 
sites becomes Gaussian at long times. 

1.2.2 Mean First Passage Time 

One of the most useful quantities we can determine from the master equation for a random walk is 
the average time it takes for the random walk to reach a particular site ns for the first time. This 
quantity, called the mean first passage time, can be determined via the following trick: we place an 
absorbing boundary condition at ns, Pns (t) = 0. Whenever the walk reaches site ns, it stays there 
for all later times. One then calculates the survival probability S(t), that is, the probability that 
the walker has not yet visited ns at time t, ∑
 

S(t) = Pn(t) (1.23) 
n̸=ns 

The mean first passage time ⟨t⟩ then corresponds to the time-averaged survival probability, ∫ ∞ 

⟨t⟩ = S(t) dt (1.24) 
0 

Sometimes it is more convenient to write the mean first passage time in terms of the probability 
density of reaching site ns at time t. This quantity is denoted by f(t) and satisfies 

dS(t)
f(t) = − 

∑
 
= Pn(t)Wnns (1.25)

dt 
n̸=ns 

In terms of f(t), the mean first passage time is given by ∫ ∞ 

⟨t⟩ = t f(t) dt (1.26) 
0 

The mean first passage time is a quantity of interest in a number of current research applications. 
Rates of fluorescence quenching, electron transfer, and exciton quenching can all be formulated in 
terms of the mean first passage time of a stochastic process. 

Example: Let’s calculate the mean first passage time of the three-site model introduced in Figure 1.1, 
with all transition rates having the same value k. Suppose the system is prepared in state 1, and we’re 
interested in knowing the mean first passage time for site 3. Applying the absorbing boundary condition at 
site 3, we derive the following master equations:    

Ṗ1 = −2kP1 + kP2 

Ṗ2 = kP1 − 2kP2 

Ṗ3 = kP1 + kP2 

The transition matrix W corresponding to this system would have a zero column since P3 does not occur on 
the right hand side of any of these equations; hence the sink leads to a zero eigenvalue that we can ignore. 
The relevant submatrix 

W1,2 =

(
−2k k 
k −2k

) 
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12 Chapter 1. Stochastic Processes and Brownian Motion 

has eigenvalues λ1 = −k, λ2 = −3k. Using the spectral decomposition formula, we find that the survival 
probability is ∑ 

−kt S(t) = ⟨1|ψi⟩e it⟨ψi|n⟩ = e 
i,n 

Hence, the previously defined probability density f(t) is given by f(t) = ke−kt, and the mean first passage 
time for site 3 is 

1 ⟨t⟩ = 
k 

1.3 Fokker-Planck Equations and Diffusion 

We have already generalized the equations governing Markov processes to account for systems that 
evolve continuously in time, which resulted in the master equations. In this section, we adapt these 
equations further so that they may be suitable for the description of systems with a continuum of 
states, rather than a discrete, countable number of states. 

1.3.1 Motivation and Derivation 

Consider once again the infinite one-dimensional lattice, with lattice spacing ∆x and timestep size 
∆t. In the previous section, we wrote down the master equation (discrete sites, continuous time) 
for this system, but here we will begin with the Markov chain expression (discrete sites, discrete 
time) for the system, 

1 
P (n, s + 1) = (P (n + 1, s) + P (n − 1, s)) (1.27)

2 

In terms of ∆x and ∆t, this equation is 

1 
P (x, t +∆t) = [P (x +∆x, t) + P (x − ∆x, t)] (1.28)

2 

Rearranging the previous equation as a finite difference, as in 

P (x,t+∆t)−P (x,t) (∆x)2 P (x+∆x,t)+P (x−∆x,t)−2P (x,t)= · (1.29)∆t 2∆t (∆x)2 

and taking the limits ∆x → 0, ∆t → 0, we arrive at the following differential equation: 

∂ ∂2 

P (x, t) = D P (x, t) (1.30)
∂t ∂x2 

(∆x)2 
where D = 2∆t . This differential equation is called a diffusion equation with diffusion constant 
D, and it is a special case of the Fokker-Planck equation, which we will introduce shortly. The most 
straightforward route to the solution of the diffusion equation is via spatial Fourier transformation, ∫ ∞ 

˜ ikx dxP (k, t) = P (x, t)e (1.31) 
−∞ 

In Fourier space, the diffusion equation reads 

˜∂
P (k, t) = −Dk2P̃ (k, t) (1.32)

∂t 
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and its solution is
 
−Dk2tP̃ (k, t) = P̃ (k, 0)e	 (1.33) 

If we take a delta function P (x, 0) = δ(x − x0) centered at x0 as the initial condition, the solution 
in x-space is 

1 (x−x0)
2 

−P (x, t) = √ e 4Dt (1.34) 
4πDt 

Thus the probability distribution is a Gaussian in x that spreads with time. Notice that this so
lution is essentially the same as the long-time solution to the spatially discretized version of the 
problem presented in the previous example. 

We are now in a position to consider a generalization of the diffusion equation known as the 
Fokker-Planck equation. In addition to the diffusion term D ζ

2 

ζx2 , we introduce a term linear in the 
first derivative with respect to x, which accounts for drift of the center of the Gaussian distribution 
over time. 

Consider a diffusion process on a three-dimensional potential energy surface U(r). Conservation of 
probability requires that 

Ṗ (r, t) = −∇ · J	 (1.35) 

where J is the probability current, J = −D∇P +JU , and JU is the current due to the potential U(r). 
At equilibrium, we know that the probability current J = 0 and that the probability distribution 

−[U(r)should be Boltzmann-weighted according to energy, Peq(r) ∝ e . Therefore, at equilibrium, 

−Dβ∇U(r)P (r)eq + JU = 0	 (1.36) 

Solving Eq.(1.36) for JU and plugging the result into Eq.(1.35) yields the Fokker-Planck equation, 

Ṗ (r, t) = D∇ [∇P (r, t) + β∇U(r)P (r, t)]	 (1.37) 

1.3.2 Properties of Fokker-Planck Equations 

Let’s return to one dimension to discuss some salient features of the Fokker-Planck equation. 

•	 First, the Fokker-Planck equation gives the expected results in the long-time limit: 

lim P = Peq with Ṗ = 0	 (1.38) 
t→∞ ∫ ∞•	 Also, if we define the average position x̄ = −∞ xP (x) dx, then the differential form of the 

Fokker-Planck equation can be used to verify that ( )
∂ 

ẋ̄ = Dβ − U(x)	 (1.39) 
∂x 

¯Since the quantity in parentheses is just the average force F , Eq.(1.39) can be combined with 
the Einstein relation Dβζ = 1 (see section 1.4) to justify that ζv̄ = F̄ ; the meaning and 
significance of this equation, including the definition of ζ, will be discussed in section 1.4. 

•	 The Fokker-Planck equation is linear in the first and second derivatives of P with respect to 
ζ ζ ζ2 

x; it turns out that any spatial operator that is a linear combination of , and willζx , xζx ζx2 

define a Gaussian process when used to describe the time evolution of a probability density. 
Thus, both the diffusion equation and the more general Fokker-Planck equation will generally 
always describe a Gaussian process. 
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14 Chapter 1. Stochastic Processes and Brownian Motion 

•	 One final observation about the Fokker-Planck equation is that it is only analytically solvable 
in a small number of special cases. This situation is exacerbated by the fact that it is not of 

(U 
Hermitian (self-adjoint) form. However, we can introduce the change of variable P = e − 

2 Φ; 
in terms of Φ, the Fokker-Planck equation is Hermitian, 

∂Φ [ ]
= D ∇2Φ − UeffΦ	 (1.40) 

∂t 

([∇U)2 
− [∇

2Uwhere Ueff = 4 2 . This transformed Fokker-Planck equation now bears the same 
functional form as the time-dependent Schrödinger equation, so all of the techniques associ
ated with its solution can likewise be applied to Eq.(1.40). 

Example: One of the simplest, yet most useful, applications of the Fokker-Planck equation is the description 
of the diffusive harmonic oscillator, which can be treated analytically. Here we solve the Fokker-Planck 
equation for the one-dimensional diffusive oscillator with frequency ω. The differential equation is 

∂P ∂2 ∂ 
= D P + γ (xP )

∂t ∂x2 ∂x 

where γ = mω2Dβ. We can solve this equation in two steps: first, solve for the average position using 
Eq.(1.39), 

ẋ̄ = −γx̄

Given the usual delta function initial condition P (x, 0) = δ(x − x0), the average position is given by 

x̄(t) = x0e 
−it 

Thus, memory of the initial conditions decays exponentially for the diffusive oscillator. 

γThen, since the Fokker-Planck equation is linear in P and bilinear in x and , the full solution must γx 
take the form of a Gaussian, so we can write [ ]

1 (x − x̄(t))2 

P (x0, x, t) = √ exp − 
2πα(t) 2α(t) 

where x̄(t) is the time-dependent mean position and α(t) is the time-dependent standard deviation of the 
distribution. But we’ve already found x̄(t), so we can substitute it into the solution, [ ]−it)21 (x − x0e

P (x0, x, t) = √ exp − 
2πα(t) 2α(t) 

Finally, from knowledge that the equilibrium distribution must satisfy the stationary condition ∫ o 

Peq(x) = P (x0, x, t)Peq(x0) dx0 
−o 

we can determine that 
−2it 1 − e

α(t) = 
mω2β 

Thus the motion of the diffusive oscillator is fully described.
 

The long and short-time limits of P (x0, x, t) are both of interest to us. At short times,
 √ [ ]
1 (x − x0)2 

lim P (x0, x, t) = exp − 
t-0 4πDt 4Dt 

5.72, Spring 2008	 J. Cao
 



15 Chapter 1. Stochastic Processes and Brownian Motion 

and the evolution of the probability looks like that of a random walk. In the long-time limit, on the other 
hand, we find the equilibrium probability distribution √ [ ]

mω2β 1 
lim P (x0, x, t) = exp − mω2βx2
t-o	 2π 2 

which is Gaussian with no mean displacement and with variance determined by a thermal parameter and a 
parameter describing the shape of the potential. A Gaussian, Markovian process that exhibits exponential 
memory decay, such as this diffusive oscillator, is called an Ornstein-Uhlenbeck process. 

1.4 The Langevin Equation 

Our focus in this chapter has been on the description of purely stochastic processes. However, a 
variety of interesting and important phenomena are subject to combinations of deterministic and 
stochastic processes. We concern ourselves now with a particular class of such phenomena which 
are described by Langevin equations. In its simplest form, a Langevin equation is an equation of 
motion for a system that experiences a particular type of random force. The archetypal system 
governed by a Langevin equation is a Brownian particle, that is, a particle undergoing Brownian 
motion. (For a brief description of the nature and discovery of Brownian motion, see the Appendix). 

The Langevin equation for a Brownian particle in a one-dimensional fluid bath is 

mv̇(t) + ζv(t) = f(t)	 (1.41) 

where v(t) = ẋ(t) is the velocity of the Brownian particle, ζ is a coefficient describing friction 
between the particle and the bath, m is the mass of the Brownian particle, and f(t) is a random 
force. Though it is random, we can make a couple of useful assumptions about f(t): 

•	 The random force is equally likely to push in one direction as it is in the other, so the average 
over all realizations of the force is zero, 

⟨f(t)⟩f = 0 

•	 The random force exhibits no time correlation but has a characteristic strength factor g that 
does not change over time,
 

⟨f(t1)f(t2)⟩f = gδ(t1 − t2)
 

Random forces that obey these assumptions are called white noise, or more precisely, Gaussian 
white noise. In this case, all odd moments of f will vanish, and all even moments can be expressed 
in terms of two-time correlation functions: for example, the fourth moment is given by 

⟨f(t1)f(t2)f(t3)f(t4)⟩f =⟨f(t1)f(t2)⟩f ⟨f(t3)f(t4)⟩f 

+⟨f(t1)f(t3)⟩f ⟨f(t2)f(t4)⟩f 

+⟨f(t1)f(t4)⟩f ⟨f(t2)f(t3)⟩f 

In general, complex systems may exhibit time-dependent strength factors g(t), but we will work 
with the more mathematically tractable white noise assumption for the random force. 

The formal solution to the Langevin equation Eq.(1.41) is ∫ t1
(
m 

(
m

− − (t−β )f(τ) dτ (1.42)
t v(t) = v(0)e
 + e 
m 0 
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16 Chapter 1. Stochastic Processes and Brownian Motion 

In computing the average velocity under the white noise assumption, the second term of Eq.(1.42) 
vanishes thanks to the condition ⟨f(t)⟩f = 0. So the average velocity is simply 

= v(0)e − t⟨v(t)⟩f 
( 
m (1.43)
 

Of special interest is the velocity-velocity correlation function 

C(t1 − t2) = ⟨v(t1)v(t2)⟩f (1.44) 

which can also be computed from Eq.(1.42). Invoking the white noise condition for ⟨f(t1)f(t2)⟩f , 
we find that ( )

v(0)2 − 
g 

2mζ 
⟨v(t1)v(t2)⟩f =
 − ( 

m
(t1+t2) +
 

g
 
2mζ
 

e
 −
( 
m
(t2−t1) (1.45)
e
 

So far, we have only performed an average over realizations of the random force, denoted by ⟨. . . ⟩f ; 
to proceed, we may also take a thermal average ⟨. . . ⟩[ , that is, the average over realizations of 

2 1different initial velocities at inverse temperature β. Equipartition tells us that ⟨v0 ⟩[ = m[ ; if we 
use Eq.(1.45) to write down an expression for ⟨⟨v(t1)v(t2)⟩f ⟩[ and apply equipartition, we arrive 
at the conclusion that 

2ζ 
g = (1.46)

β 

which is a manifestation of the fluctuation-dissipation theorem (the fluctuations in the random 
force, described by g, are proportional to the dissipation of energy via friction, described by ζ). 

The properties of the velocity variable v enumerated above imply that the distribution of velocities 
is Gaussian with exponential memory decay, like the diffusive oscillator in section 1.3, and so we 
can also think of this type of Brownian motion as an Ornstein-Uhlenbeck process. In particular, 
the probability distribution for the velocity is √ [ ]− t)2mβ mβ(v − v0e

P (v0, v, t) = exp − (1.47)−2 t) −2 t)2π(1 − e 2(1 − e

We now have a thorough description of the Brownian particle’s velocity, but what about the parti
cle’s diffusion? We’d like to know how far away the Brownian particle can be expected to be found 
from its initial position as time passes. To proceed, we calculate the mean square displacement of 
the particle from its initial position, 

R2(t) = ⟨(x(t) − x(0))2⟩ (1.48) ∫ t ∫ t 
= ⟨v(τ1)v(τ2)⟩ dτ2 dτ1 (1.49) 

0∫ 0 
t 

= 2 (t − τ)C(τ) dτ (1.50) 
0 

At long times, the mean square displacement behaves as ∫ ∞ 

R2(t) = 2t C(t) dt (1.51) 
0 
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17 Chapter 1. Stochastic Processes and Brownian Motion 

This linear scaling with time is the experimentally observed behavior of Brownian particles, where 
the proportionality constant is called the diffusion constant D; hence, we have found an expression 
for the macroscopic diffusion constant D in terms of the correlation function, ∫ ∞ 

D = C(t) dt	 (1.52) 
0 

Eq.(1.52) is known as the Green-Kubo relation, and it implies that the mean square displacement 
at long times is simply 

lim R2(t) = 2Dt	 (1.53) 
t≫1 

This result for the mean square displacement also scales linearly with the dimensionality of the 
system (i.e. in three dimensions, R2(t) = 6Dt). 

To determine the behavior of R2(t) at short times, note that v(t) ≈ v(0) for short times, so(∫ )2 2that R2(t) = v(t) dt ≈ ⟨v0⟩t2 . Therefore, the short-time limit of the mean square displacement 
is 

2lim R2(t) = 
1 
t	 (1.54) 

t≪1 mβ 

For times in between these extremes, the formal solution to the Langevin equation for the velocity 
would have to be integrated. This can be done; sparing the details, the result after thermal 
averaging is 

2 
[

1 ( )]−	 tR2(t) = t − 1 − e	 (1.55)
βζ γ 

where γ = . m 

As a final note, the Langevin equation as presented in this section is often modified to describe 
more complex systems. The most common modifications to the Langevin equation are: 

•	 The replacement of the friction coefficient ζ with a memory kernel γ(t) that allows the system 
to have some memory of previous interactions. 

•	 The addition of a deterministic mean force F = −∇U , which permits the system to respond 
to forces beyond those due to interactions with the bath. 

Such modified Langevin equations, also known as Generalized Langevin equations or GLEs, will be 
explored in further detail in Chapter 4. The Langevin equation and its generalized counterparts 
provide the basis for a number of successful models of stochastic processes in chemical physics.[3] 
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18 Chapter 1. Stochastic Processes and Brownian Motion 

1.5 Appendix: Applications to Brownian Motion 

Brownian motion is one of the simplest physical examples of a system whose description necessi
tates a nonequilibrium statistical description. As such, it is the token example that unifies all of 
the topics in this course, from Markov processes (Ch. 1) and response functions (Ch. 2) to diffu
sion constants (Ch. 3) and generalized Langevin equations (Ch. 4). In this appendix, the salient 
features of Brownian motion and the key results about Brownian motion that will be developed 
during the course are exposited together as a handy reference. Some basic properties of relevant 
integral transformations are also included in this Appendix. 

The discovery of Brownian motion predates the development of statistical mechanics and pro
vided important insight to physicists of the early twentieth century in their first formulations of 
an atomic description of matter. A fine example of the importance of keeping an eye open for the 
unexpected in experimental science, Brownian motion was discovered somewhat serendipitously in 
1828 by botanist Robert Brown while he was studying pollen under a microscope. Though many 
others before him had observed the jittery, random motion of fine particles in a fluid, Brown was the 
first to catalogue his observations[4] and use them to test hypotheses about the nature of the motion. 

Interest in the phenomenon was revived in 1905 by Albert Einstein, who successfully related ob
servations about Brownian motion to underlying atomic properties. Einstein’s work on Brownian 
motion[5] is perhaps the least well known of the four paradigm-shifting papers he published in his 
“Miracle Year” of 1905, which goes to show just how extraordinary his early accomplishments were 
(the other three papers described the photoelectric effect, special relativity, and mass-energy equiv
alence)! Einstein determined that the diffusion of a Brownian particle in a fluid is proportional to 
the system temperature and inversely related to a coefficient of friction ζ characteristic of the fluid, 

1 
D = 

βζ 

Any physical description of Brownian motion will boil down to an equation of motion for the 
Brownian particle. The simplest way, conceptually, to model the system is to perform Newtonian 
dynamics on the Brownian particle and N particles comprising the fluid, with random initial con
ditions (positions and velocities) for the fluid particles. By performing such calculations for all 
possible initial configurations of the fluid and averaging the results, we can obtain the correct pic
ture of the stochastic dynamics. This procedure, however, is impossibly time-consuming in practice, 
and so a number of statistical techniques, such as Monte Carlo simulation, have been developed to 
make such calculations more practical. 

Alternatively, we can gain qualitative insight into Brownian dynamics by mean-field methods; that 
is, instead of treating each particle in the fluid explicitly, we can devise a means to describe their 
average influence on the Brownian particle, circumventing the tedium of tracking each particle’s 
trajectory independently. This approach gives rise to the Langevin equation of section 1.4, under 
the assumption that the fluid exerts a random force f(t) on the Brownian particle that obeys the 
conditions of Gaussian white noise. 

For instantaneous (gas-phase) collisions of the fluid and Brownian particle, a Langevin equation 
with constant frictional coefficient ζ suffices, 

mv̇(t) + ζv(t) = f(t) 
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19 Chapter 1. Stochastic Processes and Brownian Motion 

However, if fluid-particle collisions are correlated, which is the case for any condensed-phase system, 
this correlation must be taken into account by imbuing the Brownian particle with memory of its 
previous interactions, embodied by a memory kernel γ, ∫	 t 

mv̇(t) + m γ(t − τ)v(τ) dτ = f(t) 
0 

where γ(t) → ζδ(t) in the limit of uncorrelated collisions. 

We now present some of the key features of Brownian motion. Some of these results are de
rived in section 1.4; others are presented here for reference. Please consult the references at the 
end of this chapter for further details about the derivation of these properties. 

•	 Fick’s Law: The spreading of the Brownian particle’s spatial probability distribution over 
time is governed by Fick’s Law, 

∂
P (r, t) = −D∇2P (r, t)

∂t 

•	 Green-Kubo relation: The diffusion constant D is tied to the particle’s velocity-velocity 
correlation function C(t) by the Green-Kubo relation, ∫ ∞ 

D = C(t) dt 
0 

This essentially means that the diffusion constant is the area under the velocity-velocity cor
relation curve across all times t > 0. 

•	 Solution of the Langevin Equation: All of the information we require from the Langevin 
equation is contained in the correlation function. Multiplication of the Langevin equation for 
v(t1) by the velocity v(t2) yields a differential equation for the correlation function, ∫	 t 

Ċ + γ(t − τ)C(τ) dτ = 0 
0 

The Laplace transform of this equation, 

sĈ(s) − C(0) + γ̂(s)Ĉ(s) = 0 

has as its solution 
C(0)

Ĉ(s) = 
s + γ̂(s) 

where C(0) is the non-transformed velocity-velocity correlation function at t = 0 and s is the 
Laplace variable. 
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20 Chapter 1. Stochastic Processes and Brownian Motion 

•	 Einstein relation: The solution to the Langevin equation tells us that 

C(0)
Ĉ(0) = 

γ̂(0) 

Additionally, a comparison of the Green-Kubo relation to the formula for the Laplace trans
ˆform indicates that C(0) = D. Finally, we can conclude from the equipartition theorem that 

C(0) = 1 Combining this information together, we arrive at Einstein’s relation, m[ . 

1 
D = 

mβγ̂(0) 

In Chapter 4, the behavior of the velocity-velocity correlation function is explored for the cases in 
which the fluid is a bath of harmonic oscillators, a simple liquid, and an elastic solid. Their general 
functional forms are summarized here; further details can be found in Chapter 4. 

•	 Harmonic oscillators: C(t) is periodic with amplitude C(0) and frequency Ω0 (the Einstein 
frequency), where Ω2 = γ(0).0 

•	 Liquids: C(t) exhibits a few oscillations while decaying, eventually leveling out to zero. 

•	 Solids: Like a liquid, C(t) will be damped, but like the harmonic oscillator model, the 
periodic structure of the solid will prevent C(t) from decaying to zero; some oscillation at the 
Einstein frequency will continue indefinitely. 

Finally, we summarize the response of a Brownian particle to an external force F . The modified 
Langevin equation for this situation is 

f(t) F (t) 
v̇(t) + γv(t) = + 

m m 

In general, this Langevin equation is difficult to work with, but many forces of interest (such as 
EM fields) are oscillatory, so we assume an oscillatory form for the external force, 

F (t) = Fγe 
−iγt 

Then we can use the techniques developed in Chapter 2 to determine that the velocity in Fourier 
space is given by 

ṽ(ω) = χ(ω)F̃ (ω) 

Finally, from this information it can be determined that the response function K(t) is (see Chapter 
2) ∫ ∞ −iγt 

K(t) = 
1 e

dω = e tθ(t)
2π −iω + γ0 

These formulas are the basis for the Debye theory of dipole reorganization in a solvent, in the case 
where F corresponds to the force due to the electric field E(ω) generated by the oscillating dipoles. 

Integral Transformations: We conclude with a summary of the Laplace and Fourier transforms, 
which are used regularly in this course and in chemical physics generally to solve and analyze 
differential equations. 
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21 Chapter 1. Stochastic Processes and Brownian Motion 

1. Laplace transform: The Laplace transform of an arbitrary function f(t) is ∫ ∞ 

f̂(s) = e −stf(t) dt 
0 

Both the Laplace and Fourier transforms convert certain types of differential equations into 
algebraic equations, hence their utility in solving differential equations. Consequently, it is 
often useful to have expressions for the first and second derivatives of f̂(s) on hand: 

f̂ (1)(s) = sf̂(s) − f(0) 

f̂ (2)(s) = s 2f̂(s) − sf(0) − f̂ (1)(0) 

A convolution of two functions ∫ t 
F (t) = f(t)g(t − τ) dτ 

0 

is also simplified by Laplace transformation; in Laplace space, it is just a simple product, 

F̂ (s) = f̂(s)ĝ(s) 

2. Fourier transform: The Fourier transform of an arbitrary function f(t) is ∫ ∞ 
iγtf(t) dtf̃(ω) = e 

−∞ 

Its derivatives are even simpler in structure than those of the Laplace transform: 

f̃ (1)(ω) = −iωf̃(ω) 

f̃ (2)(ω) = −ω2f̃(ω) 

For an even function f(t), the relationship between the Fourier and Laplace transforms can 
be determined by taking a Laplace transform of f at s = iω, from which we discover that 

f̃(ω) = 2Re f̂(−iω) 
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