MASSACHUSETTS INSTITUTE OF TECHNOLOGY

5.74 Quantum Mechanics II Spring, 2004

Professor Robert W. Field

Problem Set # 6

DUE: At the start of Lecture on Monday, April 12.

Reading: HLB–RWF 9.1.3, 9.1.4, 9.1.7.

Problems:

- 1. Return to problem 1D of Problem Set #5. Use spherical tensor algebra and the Wigner-Eckart Theorem to compute the relative transition amplitudes for all of the allowed $n'p \leftarrow 6s$ transitions from J = 3, $M_J = 2$ of 6s5d ${}^{3}D_3$ into the various L-S-J- M_J states of the n'p5d configuration. The transition moment operator is of the $\mathbf{T}^1(q_1)$ form where q_1 refers to the position coordinate of electron 1. Your L-S-J- M_J states are coupled with respect to L and S and with respect to electron 1 and electron 2.
- 2. Return to problem 2 of Problem Set #5. Use spherical tensor algebra to relate $\zeta(N, L, S)$ and C(N, L, S, J) for the ¹P₁ and ³P_J states of 6*snp* and the ¹D₂ and ³D_J states of 6*s5d* of ¹³⁷Ba to the single-orbital parameters ζ_{np} , ζ_{5d} , a_{6s} , a_{np} , a_{5d} , b_{6s} b_{np} and b_{5d} . The single-orbital parameters are most "fundamental" because they are transferable from one state to another and are even scalable as a function of quantum number n and nuclear charge (isoelectronic series).
- 3. Return to problem 2C of Problem Set #5. Use spherical tensor techniques to compute the relative transition amplitudes into the fine, hyperfine components of $6snp {}^{3}P_{J}$ from the various hyperfine components of $6s5d {}^{3}D_{J}$ J = 3 and J = 2.
- 4. Return to problem 2D of Problem Set #5. Let

$$\zeta_{np} = (6/n)^{3} \zeta_{6p}$$

$$\zeta_{6p} = 832 \text{ cm}^{-1}$$

$$a_{6s} = 0$$

$$a_{np} = 10^{-3} \zeta_{np}$$

$$b_{6s} = 1 \text{ cm}^{-1}$$

$$b_{np} = 0$$

Find the 3 values of n for which $\zeta_{np} = 10 \ b_{6s}$, $\zeta_{np} = b_{6s}$, and $\zeta_{np} = 0.1 \ b_{6s}$. Compute the level structure, transition amplitudes, and quantum beating signal for pulsed excitation from $6s5d \ ^3D_J$ (J = 3 and J = 2) to $6snp \ ^3P$. [Ignore the effects of $^1P_1 \sim {}^3P_1$ spin-orbit interactions.]