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DUE: At the start of Lecture on Wednesday, May 5. 

Reading: HLB-RWF Section 9.3 

Problems: 

I. Intramolecular Vibrational Redistribution (IVR) and Isomerization.

Brooks Pate, at the University of Virginia, has performed ingenious infrared-
microwave multiple resonance experiments designed to measure conformational 
isomerization rates in the presence of rapid IVR. [See Int. Revs. Phys. Chem. 19, 
363-407 (2000).] It is based on the concept of “motional narrowing” in NMR 
where two resolved transitions associated with chemically distinct spins broaden 
and merge into one transition (of width narrower than the separation between the 
previously resolved transitions) when the exchange rate between the chemically 
distinct sites becomes sufficiently rapid. This problem is my attempt to capture 
the essence of Pate’s experiment in a simplified model. 

A. IVR without Isomerization 

Set up two 100 × 100 random matrices to represent the J = 5 and J = 6 

rotational levels of isomer A, following the prescription: 

(i) HA(J = 5) 

0( )  − 15000 cm− 1 ≤ HAn An / hc ≤ 5010 cm , 

A = 10 cm− 1 (density of states, not density matrix)ρ vib 

1( )  = 0 , HAn Am 

2 1( )1 2  = ( H hc)  = 0 20  cm− 1..σ A 
/ 


 

An Am , 

You are to generate random numbers for both the diagonal and the 
off-diagonal matrix elements: two separate sets of random 
numbers. 
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(ii)	 HA(J = 6) 

Construct this matrix by adding 12B = 12 cm–1 to each of the 
diagonal elements in HA(J = 5). Generate a new set of random 

1 2numbers for the off-diagonal matrix elements, keeping σ A 
/  = 0.20 

–1cm . 

(iii)	 The pure rotation spectrum is controlled by matrix elements of the 
electric dipole moment operator. For this problem, let 

Aµ ,A J  = 5, n µµ ,A J  = 6, m = µ δ .nm A nm  

In other words, the only allowed rotational transitions are between 
zero-order states that belong to the same vibrational quantum 
number. 

(iv)	 Compute the frequencies and intensities of the 104 eigenstate to 
eigenstate transitions in the pure rotational spectrum. Use the 
eigenvectors of HA(J=5) and HA(J=6). Plot the rotational spectrum 
(intensity vs. wavenumber) on an appropriately expanded cm–1 

scale in the neighborhood of 

6 5EAn ( )  − EAn ( )  
= 12 cm-1. 

hc 

“Edge effects” are minimized by retaining only the central 50% of 
the 104 transition frequencies. 

(v)	 Compute the Full Width at Half Maximum (FWHM) of the 
J = 6 ← 5 rotational spectrum. (You might want to convolve the 

infinite resolution spectrum that you have calculated with an 
appropriate lineshape function, say of FWHM ≈ 0.05 cm–1, in order 
to get a smooth, symmetric, and hopefully near Lorentzian 
lineshape.) 

hc 
/ 1 2

) 2 ( )1(vi)	 Increase and decrease    by a factor of 2 to( HAn Am, 

verify that the FWHM of the pure rotation spectrum varies 
according to Fermi’s Golden Rule Formula. This determines the 
IVR rate. 
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B.	 The Other Isomer 

Repeat parts (i) - (v) for isomer B.  Since isomer B is less stable than 
isomer A, the levels of isomer B in the neighborhood of 

( )0 hc = 5005 cm-1HBn Bn , 

have smaller values of 

B = 5 -1  cmρ vib


 1 2 
/ 1( )  2 

 = 0 10  cm− 1..( HBn Bm ), 

According to the Golden Rule Formula, the FWHM of the isomer B 
transition should be narrower than that for isomer A by a factor of 8. Let 

µA = µB


BB = 0.95 BA.


The low-resolution J = 6 ← 5 pure rotation spectrum of the thermal 

isomer A + B mixture should consist of two composite lines, that for 
isomer-B centered at 11.4 cm–1, a factor of 8 narrower and with integrated 
intensity a factor of 2 smaller than that for the isomer-A line centered at 
12.0 cm–1. 

If overlap between the isomer A and B lines obscures the shape of either 
line, you should reduce BB to 0.9 BA. 

C.	 Conformational Isomerization 

(i)	 Combine the isomer-A and isomer-B H(J+5) matrices into a 200 × 
200 super-matrix. The HA and HB matrices are centered at the 
same average energy: 

E/hc = 5005 cm–1. 

(ii)	 Introduce off-diagonal matrix elements between the isomer-A and 
isomer-B blocks using random numbers with 

( )1 = 0HAn Bm , 

( )  21/1 2  =  
. = 0 5  cm− 1.σAB	  ( HAn Bm ), 

Note that you will have 104 nonzero matrix elements between the 
HA(J=5) and HB(J=5) blocks. 
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(iii)	 Do the same for the isomer-A and isomer-B J = 6 blocks. Use a 
1 2/new set of random numbers with σ AB = 0 5  cm–1 for the off-

diagonal matrix elements. Since the isomer-A and isomer-B 
blocks do not span the same range of zero-order energies, you 
should discard the eigen-energies that fall outside the 
5013 cm–1 ≤ E ≤ 5020.6 cm–1 region. 

. 

(iv)	 Diagonalize the two 200 × 200 H(J=5) and H(J=6) matrices. 

Compute the pure rotation spectrum in the region 

(
8 4  cm− 1 ≤ 

E J  = 6) − E J  − 5)
.

(	
≤ 15 cm− 1 

hc 

using the eigenvectors of H(6) and H(5) and transition moment 
matrix 

Bµ = µA + µ . 

Note that transitions between basis states that belong to different 
isomers are forbidden 

An µµ Bm = µ δ δ .A AB mn  

 1 2/ 
1 2  1( )  2/(v)	 Vary σ AB = 

 
 in factor of 3 steps until you can,( HAn Bm ) 

follow the evolution from a spectrum consisting of two distinct 
1 2/isomer-A and isomer-B lines (low value of σ AB ) to a spectrum 

containing a single “motionally narrowed” line (high value of 
/1 2).σ AB 

II.	 Interaction between Sharp and Broad Quasi-Eigenstates 

You are going to approach this problem in two ways. First you will consider the 
interaction between two clusters of eigenstates. Next you will replace the cluster 
of individual eigenstates by a single broad quasi-engenstate. The spectral 
properties of the two approaches had better be very similar. 

A.	 Use HA(J=5) and HB(J=6) from problem IA(i) and IB. You want two 
clusters, each composed of 100 eigenstates. The two clusters should have 
Fermi Golden Rule widths different by approximately a factor of 10. The 
two clusters should have 〈 EA〉 = 〈 EB〉 . 
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B.	 Pick one zero-order state in each cluster which lies closest to 
(0) (0)= 5005 0cm–1, ψ A,middle and ψ B,middle . Plot the fractional 

(0) (0)

E ( )  hc  0 . 

character of ψ A,middle and ψ B,middle in each of the eigenstates vs. eigen-

energy. The plot of fractional character vs. energy should be 
approximately Lorentzian with FWHM predicted by the Fermi Golden 
Rule Formula. The lineshape can be made clearer by convoluting the stick 
spectrum with a suitable lineshape function. 

C. Construct an HA(J=5) + HB(J=6) 	super matrix. The off-diagonal elements 
in this matrix will be given by a constant, HAB, times the product of the 

(0) (0)amplitudes of ψ A,middle and ψ B,middle in each eigenstate of HA(J=5) and 

HB(J=6), respectively. Choose 

H
1 

AB = 2ΓB, where ΓB is the Fermi Golden Rule width of cluster B (the 

narrower cluster). 

D.	 Find the eigen-energies and eigen-vectors of the HA(J=5) + HB(J=6) super 
(0) (0)matrix. Compute the fractional ψ A,middle and ψ B,middle character in each 

of the 200 eigenstates of the super matrix and plot the fractional character 
vs. eigen-energy as in part (ii). 

E Repeat steps C and D for values of HAB increased each time by a factor of 
~3 until HAB ≈ 4ΓA (A is the broader cluster). You should see a qualitative 

(0) (0)change in the distribution of ψ A,middle and ψ B,middle character vs. energy. 

Describe this qualitative change. 

III.	 Complex Heff formalism for interaction between sharp and broad 
quasi–eigenstates.  This is a much more compact and convenient method than the 
random matrix method you used in problem 2. 

A.	 Strong Coupling Limit 

E ≡ ε - iΓ/2 

For the zero-order states A and B

εA + εB
ε = = 0 

2 

hc = 9	 cm−1ΓA 

hc = 1	 cm−1ΓB 

hc  = 20 cm−1HAB 

E± ≡ ε± − iΓ± 2	 (by definition, ε+ ≥ ε− ). 
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Plot ε+, ε–, Γ+, Γ– vs. εA – εB over the region


−1
−50 cm−1 ≤
εA − εB ≤ 50 cm . 

hc 
Make special note of ε+ – ε–, and Γ+ – Γ–  at εA – εB = 0. Explain your 

observations in the context of ordinary 2-state non-degenerate and 
quasi–degenerate perturbation theory. 

B.	 Repeat the calculations and plots in Part A for all parameters the same 
except


ΓA/hc = ΓB/hc = 5 cm–1.


C.	 Weak Coupling Limit. Repeat the calculations and plots in Part A for all 
parameters the same as in Part A except 

HAB/hc = 0.5 cm–1. 

Make special note of ε+ – ε– and Γ+ – Γ– at εA – εB = 0. What, if anything, 

is surprising? 

D.	 Repeat the calculations and plots in Part C except 

ΓA/hc = ΓB/hc = 5 cm–1. 

E.	 Does the transition between the strong and weak coupling limits depend 
ΓA − Γ ΓA + ΓBBon the magnitude of HAB relative to or ? Discuss. 

2	 2 
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