5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Chemistry 5.76 Spring 1985

Problem Set #4

1. Steinfeld, page 177, #1.

The corners of a cube are numbered 1, 2, 3, 4 clockwise around the top face of the cube, and 5, 6, 7, 8 clockwise around the bottom face, corner 5 lying under corner 1, corner 6 under corner 2, and so on. A face center is denoted by the two numbers of the corners between which a face diagonal can be drawn which passes through that face center (for example, either 13 or 24 would denote the center of the top face).

- (a) The structures of several kinds of AB_4 molecules are described as follows with the above numbering system. The *A*-atom is placed at the center of the cube, and the *A*—*B* bond distances are given by the cube dimensions. However, the *B*-atoms are not necessarily all equivalent, the actual equivalence being determined by the symmetry elements remaining in the AB_4 structures.
 - (i) $AB_4(1, 2, 3, 4)$
 - (ii) $AB_4(1, 3, 5, 7)$
 - (iii) $AB_4(1, 3, 6, 8)$
 - (iv) *AB*₄(1, 5, 16, 18)
 - (v) *AB*₄(13, 36, 68, 18)

Give the point-group symbol for each AB_4 structure (for example, $C_{3\nu}$, D_{6h} , and so on).

- (b) Classify the five molecules of Part (a) as to type of molecular rotator (linear, symmetrical top, and so on).
- (c) Which of the five molecules of Part (a) will give a pure-rotational spectrum in the far-infrared or microwave region? Which will give a pure-rotational Raman effect?
- 2. Steinfeld, page 196, #1.

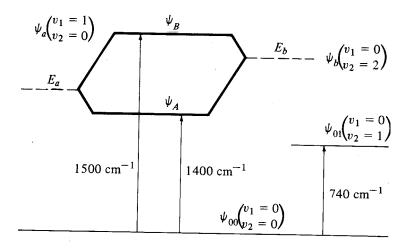
The harmonic oscillator (mass *m*) in two dimensions has a potential energy *V* expressed in polar coordinates *r*, θ , of the general form $2V = k_1 r^2 \cos^2 \theta + k_2 r^2 \sin^2 \theta$, where k_1 and k_2 are force constants. For the special case $k_1 = k_2 = k$, the oscillator has a single frequency $v = (k/m)^{1/2}/2\pi$, and its Schrödinger equation has solutions of the form

$$\psi_{v,\ell} = N_{v,\ell} \exp\left(\frac{-\alpha r^2}{2}\right) \exp(i\ell\theta)P(r)$$

page 2

where v, ℓ are quantum numbers ($v = 0, 1, 2, ..., \infty$; $\pm \ell = 0, 2, 4, ..., v$ for v even, $\pm \ell = 1, 3, 5, ..., v$ for v odd); $N_{v,\ell}$ is a normalization constant; $\alpha = 4\pi^2 mv/h$; P(r), a polynomial in r only, depends for its form on the values of v and ℓ and is an even function for even v, odd for odd v.

- (a) The energy levels of this two-dimensional oscillator are $E_v = (v + 1)hv$. What is the degeneracy of the *v*-th level?
- (b) Find $N_{v,\ell}$ for v = 1, $\ell = +1$, for which $P(r) = \alpha^{1/2} r$.
- (c) Show that any two ψ 's of the same *v* but different ℓ are orthogonal.
- (d) Find the average value of the angular momentum p_{θ} for any state v, ℓ .
- (e) Find the average value of r^{-2} for the state v = 1, $\ell = +1$.


Substitute the results of the above in the equation for the relationship between *E* and p_{θ} in the plane rotor and find *E* for the state v = 1, $\ell = +1$. Explain the difference between this value of *E* and that given by the equation of Part (a).

3. Steinfeld, page 197, # 2

The carbon suboxide molecule C₃O₂, is believed to be linear and symmetrical.

- (a) Classify the normal vibrations of C_3O_2 according to the symmetry species of point group $D_{\infty h}$.
- (b) Draw the modes of vibration of C_3O_2 .
- (c) How many polarized lines should appear in the vibrational Raman spectrum? How many fundamental infrared bands should have *P*-, *Q*-, and *R*-branches?
- (d) The ground electronic state of C_3O_2 is nondegenerate. What is the degeneracy of ψ_{mol} when C_3O_2 is in its ground electronic state with $v_1 = v_2 = v_3 = v_4 = v_5 = v_6 = 0$, $v_7 = 1$, and the rotational quantum number J = 5? The normal coordinate Q_7 is antisymmetric with respect to simultaneous interchange of all pairs of equivalent nuclei. What is the degeneracy of ψ_{mol} for the above state with J = 6 instead of 5?
- 4. Steinfeld, page 199, # 8.
 - (a) Let $\psi_a \equiv \psi_{v_1=1}(Q_1)\psi_{v_2=0}(Q_2)$ and $\psi_b \equiv \psi_{v_1=0}\psi_{v_2=2}$ be the normalized harmonic-oscillator wave functions of a polyatomic molecule corresponding to excited vibrational states of unperturbed energies E_a and E_b . If these two states are in Fermi resonance, second-order non-degenerate theory can be applied. Assume that the interaction energies H'_{aa} and H'_{bb} are zero and that H'_{ab} arises from one or more anharmonic terms in the potential function. In a certain molecule, the levels ψ_a and ψ_b are observed to be in Fermi resonance, the transitions to the *perturbed* levels being observed at 1400 and 1500 cm⁻¹, whereas the

level $\psi_{v_1=0}\psi_{v_2=1}$ has an energy of 740 cm⁻¹ above the zero level (see diagram). Deduce the unperturbed E_a -value from the above data (H'_{ab} is to be evaluated from the data, not by integration).

(b) The *intensity* of the Raman line for the transition from the ground state $\psi_{0,0}$ to the *unperturbed* state ψ_a in the absence of Fermi resonance is proportional to the square of the matrix element

$$\left\langle \psi_{0,0} \left| \frac{\partial \alpha}{\partial Q_1} Q_1 \right| \psi_a \right\rangle$$

where $\partial \alpha / \partial Q_1$ is a non-zero constant. The corresponding matrix element

$$\left\langle \psi_{0,0} \left| \frac{\partial \alpha}{\partial Q_2} Q_2 \right| \psi_b \right\rangle$$

is zero because $\Delta v_2 = 2$. Find the ratio of the intensities of the two Raman lines for the transitions from state $|\psi_{00}\rangle$ to the *perturbed* states $|\psi_A\rangle$ and $|\psi_B\rangle$.

5. ${}^{16}O^{12}C^{32}S$ is a linear molecule. The bond lengths are

$$r_{\rm CO} = 1.16 \text{ Å}$$

 $r_{\rm CS} = 1.56 \text{ Å}$

and the observed fundamental vibrational frequencies are

$$v_1 = 858.9 \text{ cm}^{-1} \text{ stretch}$$

 $v_2 = 520.4 \text{ cm}^{-1} \text{ bend}$
 $v_3 = 2062.2 \text{ cm}^{-1} \text{ stretch}.$

- (a) Obtain k_{CS} , k_{CO} , and $k_{\Theta} [r_{CO}r_{CS}]^{-1}$ in dynes/cm.
- (b) What are the amplitudes for C–O and C–S stretch in v_1 ?
- (c) What are the vibrational frequencies for ${}^{18}O^{12}C^{32}S$?