5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Chemistry 5.76 Spring 1976

Examination #1

March 12, 1976

Closed Book Slide Rules and Calculators Permitted

Answer any <u>THREE</u> of the four questions. You may work a fourth problem for extra credit. All work will be graded but no total grade will exceed 80 points.

- 1. A. (10 points) Give a concise statement of Hund's three rules.
 - B. (10 points) State the definition of a vector operator.
 - C. (10 points) If **B** and **C** are vector operators with respect to **A**, then what do you know about matrix elements of **B**·**C** in the $|AM_A\rangle$ basis?
 - D. (5 points) The atomic spin-orbit Hamiltonian has the form

$$\mathbf{H}^{\mathrm{SO}} = \sum_{i} \xi(r_i) \boldsymbol{\ell}_i \cdot \mathbf{s}_i$$

Classify \mathbf{H}^{SO} as vector or scalar with respect to **J**, **L**, and **S**. State whether \mathbf{H}^{SO} is diagonal in the $|JM_JLS\rangle$ or $|LM_ISM_S\rangle$ basis.

~ .. ~ ...

2. Consider the following multiplet transition array:

Lower State (L'', S'')						
	J	?		?		?
		(180)		(16)		(0)
	?	16934.63	48.15	16982.78	64.20	17046.98
				50.51		50.48
				(240)		(16)
Upper	?			17033.29	64.17	17097.46
State						63.10
(L',S')						(310)
	?					17160.56

Intensities are in parentheses above transition frequencies in cm^{-1} ; line separations in cm^{-1} are given between relevant transition frequencies.

A. (10 points) Use the Landé interval rule

 $E(L, S, J) - E(L, S, J - 1) = \zeta(nLS)J$

to determine J' and J'' values. Rather than list the J' and J'' assignments of each line, only <u>list J' and J''</u> for the line observed to be most intense **and** for the line observed to be least intense.

- B. (10 points) Use the range of J' and J'' and the intensity distribution (i.e., that the most intense transition is not $\Delta J = 0$) to determine the term symbols (${}^{2S+1}L$) for the upper and lower states. Assume $\Delta S = 0$.
- C. (5 points) Is the upper state regular (highest J at highest term energy) or inverted (highest J at lowest term energy)? Is the lower state regular or inverted? [Partial energy level diagrams might be helpful here.]
- 3. A. (5 points) List the L-S terms that arise from the $(ns)(np)^2$ and $(ns)^2(np)$ configurations. [HINT: $(np)^2$ gives ¹S, ³P, ¹D; to get sp^2 couple an *s* electron to these three states.]
 - B. (5 points) Which configuration gives rise to odd terms and which to even?
 - C. (5 points) List the electric dipole allowed transitions between terms of the sp^2 and s^2p configurations. (Ignore fine-structure splitting of L-S terms into J-states.)
 - D. (10 points) Construct qualitative energy level diagrams on which you display all allowed J''-J' components of ${}^{2}P^{\circ} {}^{2}S$, ${}^{2}P^{\circ} {}^{2}P$, and ${}^{2}P^{\circ} {}^{2}D$ transitions. Indicate which J''-J' line you would expect to be strongest for each of these three transitions.
- 4. (25 points) Calculate transition probabilities for the two transitions

$$nsnp \ ^{1}P_{10}^{\circ} \to (np)^{2} \ ^{1}S_{00}$$
$$nsnp \ ^{1}P_{10}^{\circ} \to (np)^{2} \ ^{1}D_{20}$$

given the following information:

$${}^{1}P_{10}^{\circ} = |J = 1, M_{J} = 0, L = 1, S = 0 \rangle$$

= $\frac{1}{\sqrt{2}} |s0^{-}p0^{+}| - \frac{1}{\sqrt{2}} |s0^{+}p0^{-}|$
 ${}^{1}S_{00} \equiv |J = 0, M_{J} = 0, L = 0, S = 0 \rangle$
= $\frac{1}{\sqrt{3}} |p1^{-}p - 1^{+}| - \frac{1}{\sqrt{3}} |p1^{+}p - 1^{-}| + \frac{1}{\sqrt{3}} |p0^{+}p0^{-}|$
 ${}^{1}D_{20} \equiv \frac{1}{\sqrt{6}} |p1^{+}p - 1^{-}| - \frac{1}{\sqrt{6}} |p1^{-}p - 1^{+}| + \frac{2}{\sqrt{6}} |p0^{+}p0^{-}|$

The electric dipole transition moment operator, μ , does not operate on spin coordinates, is a one-electron operator, and is a vector with respect to ℓ_i . $nsnp \rightarrow (np)^2$ transitions are $\Delta \ell = +1$ processes. The relevant

$$\left\langle n, \ell = 1, m_{\ell} = 1 \left| \frac{1}{2} (\mu_{+} + \mu_{-}) \right| n, \ell = 0, m_{\ell} = 0 \right\rangle = -\frac{1}{\sqrt{2}} \mu_{+}(ns)$$

$$\left\langle n, \ell = 1, m_{\ell} = 0 \left| \mu_{z} \right| n, \ell = 0, m_{\ell} = 0 \right\rangle = \mu_{+}(ns)$$

$$\left\langle n, \ell = 1, m_{\ell} = -1 \left| \frac{1}{2} (\mu_{+} + \mu_{-}) \right| n, \ell = 0, m_{\ell} = 0 \right\rangle = +\frac{1}{\sqrt{2}} \mu_{+}(ns)$$

where $\mu_+(ns)$ is the reduced matrix element $\langle np || \mu || ns \rangle$.

Show all your work including false starts. If you are unable to express the transition probabilities in terms of $\mu_+(ns)$, lavish partial credit will be given for the ratio of transition probabilities

$$\frac{{}^{1}P_{10}^{\circ} - {}^{1}S_{00}}{{}^{1}P_{10}^{\circ} - {}^{1}D_{00}}.$$