
Introduction to Computers and Engineering Problem Solving

Spring 2012

Problem Set 10: Electrical Circuits

Due: 12 noon, Friday May 11, 2012

I. Problem Statement

Figure 1. Electric circuit

The electric circuit displayed in Figure 1 can be solved applying Kirchhoff’s and Ohm’s
circuit laws, which deal with the conservation of charge and energy in electrical circuits.
There is a battery, near node 17, with Vb=12 volts, and an external voltage source that
keeps node 5 at a fixed voltage Vext=6 volts. A program fragment that you will download
(PSet10Files.zip) provides the value of each resistor. Your program should compute the
voltage at each node and the current through each resistor.

Figure 2 shows a simple network with 4 resistors, which we use to illustrate the solution
technique that you will use to solve the network in Figure 1.

1.00 Spring 2012 1 Problem Set 10

Figure 2. A simple circuit

Ohm’s Law: The volta ge drop V across a resistor is the product of the current I and the
resistance R: V=IR. To find the current I, we use I=V/R at each node in the network:

= (-)/ (eq. 1)
= (-)/ (eq. 2)
= (- -)/ (eq. 3)
= (-)/ (eq. 4)

Kirchhoff’s La w: The sum of the currents flowing into a node is equal to the sum of the
currents flowing out. We apply this at each node in the network:

-1 = 0 (eq. 5-node 0)
- = 0 (eq. 6-node 1)
-1 = 0 (eq. 7-node 2)
-1 = 0 (eq. 8-node 3)

The matrix representation of this system, in the form A=xb, can be obtained substituting
eqs. (1-4) into eqs. (5-8). For simplicity, we write the inverse of the resistances: ri=1/Ri.
After putting all terms with vi on the left hand side, and constant terms in vb on the right
hand side of each equation, we obtain:

(eq. 9)
A x = b

1.00 Spring 2012 2 Problem Set 10

In equation 9:
•	 The voltages are the unknowns (x).
•	 The resistances are known constants.
•	 The right hand side is zero, except when a battery or external voltage is at the

other end of a resistor. Battery and external voltages are known (constants).
• Current I is not used. You will compute currents later, after you find the voltages.

You should make sure you can write equation 9 systematically. By understanding this
small example, you’ll be able to work with the instructions given below to construct the
A and b matrices for the large, 18 node problem in Figure 1.

Node 1 is a special case, with constant voltage which is known (6 volt). Without
going through all the algebra, the matrix system (eq. 9) must be modified to be:

(eq. 10)

To go from (eq. 9) to (eq. 10), which rep resents the external voltage at node 1, the matrix
must be modified in the following wa y:

•	 In the b matrix, set = -

•	 After doing the operation above, set all coefficients = 0 in row 1 and column 1 of
matrix A, except set = 1

Once we know the voltage at each node, we can compute the current in each resistor from
equations (1-4).

II. Program

1. Download PSet10Files.zip from the Problem Set 10 webpage. In it you will find 3
files:

•	 GridTest.java contains a main method you will need to complete.
•	 Resistor.java models the resistors
•	 Matrix.java contains gaussian() and other useful matrix methods.

The main method in GridTest.java defines six variables that represent the 18 node
network in Figure 1:

•	 iext=5, the index of the node connected to the external power
•	 ib=16,the index of the node connected to the battery.
•	 Vext=6 :the voltage at node iext, is 6
•	 Vb=12:the battery voltage

1.00 Spring 2012 3	 Problem Set 10

•	 n=18, the number of nodes.
•	 resistors, an ArrayList of Resistor objects, with a from-node, to-node,

and r (R-1), the inverse resistance of each resistor.
Node 5 is the only node whose voltage is determined by the external voltage

You will need to add code to this main method to complete it.

2. Write a class to model the electric grid.

The class that models the grid network must have:
•	 6 private data members, to store each of the 6 variables above,
•	 A constructor with 6 arguments that initialize those data members, and
•	 2 additional data members to store the A and b matrices that its methods will

generate.

Within your grid network class, create three methods to prepare A and b using the
following logic:

A.	 Create A: A is initially filled with zeros, from Java initialization. For each
resistor t connected to nodes i and j

o	 Add rt to aii and ajj cells of matrix A, i.e.:
� aii = aii + rt and ajj = ajj + rt

o	 Add –rt to aij and aji cells of matrix A
� aij = aij - rt and aji = aji - rt

B.	 Create b:
o	 b is initially filled with zeros, from Java initialization.
o	 Find resistor ib—the resistor between node ib and node ib+1.

o	 Add Vb*rib to row ib in matrix b
o	 Add -Vb*rib to row ib+1 in matrix b. (This works only for the

specific network given in Figure 1; it is not general.)

C.	 Modify A & b: This models the external source at node iext=5 with a known
voltage Vext. Modify A and b as follows:

o	 Modify each entry in matrix b:
� bi = bi – Vext ai iext

o	 Set all entries in column iext and all entries in row iext of matrix A equal
to zero, except set a iext iext = 1

These steps adjust for Vext being known, and effectively remove one equation, so
that we have n-1 equations for n-1 unknowns. These steps do the algebra to tie
node iext with its neighbor nodes.

3. The following items can be done in either your grid network class, or the main
method:

•	 Create the A and b matrices:
•	 Run the Gaussian elimination method from class Matrix, call the output x.

1.00 Spring 2012 4	 Problem Set 10

(This is provided to you. It’s identical to the one used in lecture.)
•	 After Gaussian elimination, set xiext = Vext
•	 Output Matrix x, with the modified value of xiext
•	 Output (System.out.println) Matrix x w ith 6 values per row, over 3 rows, to see

the pattern of voltages in the same layout as the grid.
•	 Output the flows in each resistor. Compute:

o	 Ik = rk (Vi – Vj), by looping through the list of resistors
o	 With the exception of k=ib for which Iib = rib (Vb-Vi + Vj)

Use Matrix.java as provided; it is the same as in lecture. You may find it convenient
to use the incrementElement() method.

4. Complete the main() method in GridTest.java by creating an instance of your Grid
network, calling its matrix generation methods, calling the Gaussian elimination method,
and displaying the output.

Sample Output:
Voltages:
8.425212019003387
8.393268529067338
8.181187030628996
7.883149807710638
7.139553992500386
6.0
8.457155508939435
8.453618450309454
8.42266918729713
8.307420026936933
7.731195279056376
5.125190874444146
8.492636057505464
8.528116606071494
8.771147367522174
9.184433750800725
10.504254313891543
2.24981271100416

Voltages matrix format):
[+8.425] [+8.393] [+8.181] [+7.883] [+7.140] [+6.000]
[+8.457] [+8.454] [+8.423] [+8.307] [+7.731] [+5.125]
[+8.493] [+8.528] [+8.771] [+9.184] [+10.504] [+2.250]

Currents:
Resistor 0, 1): I=+0.024
Resistor 1, 2): I=+0.034
Resistor 2, 3): I=+0.179
Resistor 3, 4): I=+0.416
Resistor 4, 5): I=+0.866
Resistor 6, 7): I=+0.003
Resistor 7, 8): I=+0.005
Resistor 8, 9): I=+0.069
Resistor 9,10): I=+0.323

1.00 Spring 2012 5	 Problem Set 10

Resistor 10,11): I=+1.981
Resistor 12,13): I=�0.027
Resistor 13,14): I=�0.039
Resistor 14,15): I=�0.248
Resistor 15,16): I=�0.739
Resistor 16,17): I=+2.847
Resistor 0, 6): I=�0.024
Resistor 1, 7): I=�0.010
Resistor 2, 8): I=�0.145
Resistor 3, 9): I=�0.238
Resistor 4,10): I=�0.450
Resistor 5,11): I=+0.866
Resistor 6,12): I=�0.027
Resistor 7,13): I=�0.012
Resistor 8,14): I=�0.209
Resistor 9,15): I=�0.491
Resistor 10,16): I=�2.108
Resistor 11,17): I=+2.847

III. Extra Credit
In addition to your solution above, you may implement a Swing GUI for this problem set
and get up to 40 extra credit points. You must first complete and submit the entire
non-GUI solution as outlined above. Do not attempt to develop your GUI until you
have completed the normal assignment since it will be graded separately. You should
understand that a GUI solution often requires changes to the rest of your code. Therefore
we require you to develop your GUI solution in a separate Eclipse project, copying all the
files you need. When you submit your solution to the 1.00 Web site, first submit your
original solution. Then upload your extra credit solution as a second .zip file. Both
versions should contain all the files needed to compile and run your solution. You can
get extra credit on only one homework from problem sets 8 to 10.

For extra credit, draw the network as shown in Figure 1. The user will input the number
of east-west and north-south resistors in a grid pattern. The user will also input the node
and voltage for the battery and external voltage and the inverse resistances for each
resistor. After finding the solution, label each node with its voltage, and label each
resistor with its current and an arrow indicating the direction of flow. Have a ‘calculate’
and ‘quit’ button. An example GUI is shown below:

1.00 Spring 2012 6 Problem Set 10

(You don’t have to include a button to assign resistance, but it might be helpful.)

Turn In

1.	 Place a comment with full name, section, TA name and assignment number at the
beginning of all .java files in your solution. In this homework, you will have
multiple .java files.

2.	 Place all of the files in your solution in a single zip file. Do not include the extra
credit in this file. You must submit a working, non-GUI solution to receive any
credit.

a.	 Do not turn in electronic or printed copies of compiled byte code (.class
files) or backup source code (.java~ files)

b.	 Do not turn in printed copies of your solution.
3.	 Submit this single zip file on the 1.00 Web site under the appropriate section and

problem set number. For directions see How T o: Submit Homework on the 1.00
Web site.

4.	 Your solution is due at noon. Your uploaded files should have a timestamp of no later
than noon on the due date.

5.	 After you submit your solution, please recheck that you submitted your .java file. If
you submitted your .class file, you will receive zero credit.

6.	 Place all of the extra credit files in a single zip file. Clearly label the file as extra
credit and submit it on the 1.00 Web site.

Penalties
•	 30 points off if you turn in your problem set after Friday noon but before noon on

the following Monday. You have one no-penalty late submission per term for a
turn-in after Friday noon and before Monday noon.

•	 No credit if you turn in your problem set after noon on the following Monday.

1.00 Spring 2012 7	 Problem Set 10

MIT OpenCourseWare
http://ocw.mit.edu

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

