
1

1.00 Lecture 11

Arrays and ArrayLists

Reading for next time: Big Java: sections 13.1-13.4

Arrays

•  Arrays are a simple data structure
•  Arrays store a set of values of the same type

–  Built-in types (int, double, etc.) or
–  Objects (Students, Engines, etc.)

•  Arrays are part of the Java language
–  Arrays are objects, not primitives like iint or double.
–  They are declared in the same way as other objects

int[] intArray= new int[20]; // Irregular verb

–  The array object has an int data member, length, that
gives the number of elements in the array:

int aSize= intArray.length; // aSize= 20

•  Each value is accessed through an index
 intArray[0]= 4; intArray[1]= 77;

2

Arrays, p.2
•  Array index always starts at 0, not 1

–  An array with N slots has indices 0 through N-1
–  iintArray has elements intArray[0] through intArra

[19]

•  Array lengths cannot be changed once they are
declared

•  Arrays can be initialized when declared
int[] intArray= {5, 77, 4, 9, 28, 0, -9};

// new is implicit (not needed) in this case

•  Arrays of numerical values are zero when
constructed

y

Copying arrays

–  To copy an array, use aarraycopy() method of
System class:

int[] intArray= new int[20]; // Same as first slide
int[] newArray= new int[intArray.length]

// arraycopy(fromArray, fromIndex, toArray, toIndex, count)

System.arraycopy(intArray, 0, newArray, 0, intArray.length);

// Now intArray and newArray have separate copies of data

// Arrays don t have to be same length as long as segment

// copied fits into destination array

3

Copying entire array
iint[] intArray= { 5, 77, 4, 9, 28, 0, 9 };
int[] newArray = new int[intArray.length];
System.arraycopy(intArray, 0, newArray, 0, intArray.length)

intArray 5
77
4
9
28
0
9

newArray 5
77
4
9
28
0
9

Copying an array reference

intArray

newArray

int[] intArray= {5, 77, 4, 9, 28, 0, 9};

int[] newArray = intArray;
5
77
4
9
28
0
9

4

Looping Over Arrays
•  If doubleArray is a reference to array of doubles,

there are two ways to iterate over it.
–  This way gives more control—you can loop over just part

of it, and you know what element (i) is being computed:

ddouble sum = 0.0;
for(int i= 0; i < doubleArray.length; i++)
 sum += doubleArray[i];

–  This way is simpler but you can only iterate over the
entire array, and you don t have a loop counter (e.g., i):

 double sum = 0.0;
 // for each double d in array doubleArray
 for(double d : doubleArray)
 sum += d;

Test Your Knowledge
1.1. Which of the following expressions does not declare and Which of the following expressions does not declare and

construct an array? construct an array?
 a. int[] arr = new int[4]; a. int[] arr = new int[4];
 b. int[] arr; b. int[] arr;

 arr = new int [4]; arr = new int [4];
 c. int[] arr = {1,2,3,4}; c. int[] arr = {1,2,3,4};
 d. int[] arr; d. int[] arr;
 2. Given this code fragment: 2. Given this code fragment:
 iiinntt jj== ??;;
 iinntt[[]] ddaattaa == nneeww iinntt[[1100]];;

 SSyysstteemm..oouutt..pprriinntt((ddaattaa[[jj]]));;

 Which of the following is a legal value of j? Which of the following is a legal value of j?
 a. -1 a. -1
 b. 0 b. 0
 c. 1.5 c. 1.5
 d. 10 d. 10

5

Test Your Knowledge
3. Given this code fragment: What are the values of What are the values of
 the elements in array the elements in array A? A?
 iint[] arrayA = new int[4]; a. unknown a. unknown
 int[] arrayB; b. 0,0,0,0 b. 0,0,0,0
 arrayB = arrayA; c. 4,0,4,0 c. 4,0,4,0
 arrayB[2]=4;

d. 4,0,0,0 d. 4,0,0,0
 arrayA[0]=arrayB[2];

4. How many objects are present after 4. How many objects are present after a. 1 a. 1
 the following code fragment has the following code fragment has b. 2 b. 2
 executed? executed? c. 10 c. 10
 ddoouubbllee[[]] aarrrraayyAA==nneeww ddoouubbllee[[1100]];; d. 20 d. 20
 ddoouubbllee[[]] aarrrraayyBB;;
 aarrrraayyBB == aarrrraayyAA;;

Test Your Knowledge
. For which of these applications an array is NOT suitable? . For which of these applications an array is NOT suitable?
 a. Holding the scores on 4 quarters of a Basketball game a. Holding the scores on 4 quarters of a Basketball game
 b. Holding the name, account balance and account number b. Holding the name, account balance and account number

of an individual of an individual
 c. Holding temperature readings taken every hour through c. Holding temperature readings taken every hour through

a day a day
 d. Holding monthly expenses through a year d. Holding monthly expenses through a year

. Given the following code fragment: . Given the following code fragment: a. int index = 4; index>0; index-- a. int index = 4; index>0; index--
nntt[[]] ddaattaa == {{11,,33,,55,,77,,1111}};; b. int index=0; index<4; index++ b. int index=0; index<4; index++
oorr((__)) c. int index=0; index<data.length();c. int index=0; index<data.length();
yysstteemm..oouutt..pprriinnttllnn((ddaattaa index++ index++

[[iinnddeexx]]));; d. int index=0; index<data.length; d. int index=0; index<data.length;
ill in the blanks so that the program ill in the blanks so that the program index++ index++

ement in the array ement in the array

5

 6
ii

f

S

F
pprints out every elrints out every el
in order in order

5

 6
i

f

S

F

6

Test Your Knowledge
. What is the output of the following program? a. value before:10 a. value before:10
ublic class Test{ value after:0 value after:0
 public static void main (String[] args){ arr[0] before:10 arr[0] before:10

 int value = 10; arr[0] after: 0 arr[0] after: 0
 int[] arr = {10,11,12,13}; b. value before:10 b. value before:10
 System.out.println("value before:"+value); value after:10 value after:10
 alterValue(value); arr[0] before:10 arr[0] before:10
 System.out.println("value after:"+value); arr[0] after: 10 arr[0] after: 10

 System.out.println("arr[0]before:"+arr[0]); c. value before:10 c. value before:10
 alterArray(arr); value after:10 value after:10
 System.out.println("arr[0] after:"+arr[0]); arr[0] before:10 arr[0] before:10
 } arr[0] after: 0 arr[0] after: 0
 public static void alterValue (int x){ d. value before:10 d. value before:10
 x = 0; } value after:0 value after:0
 public static void alterArray (int[] a){ arr[0] before:10 arr[0] before:10
 a[0] = 0; } arr[0] after: 10 arr[0] after: 10

7
pp

}

Exercise
•  Create a TemperatureTest class
•  Write a main() method to:
–  Declare and construct an array of doubles,

called ddailyTemp holding daily temperature
data
•  Use an initializer list with curly braces

–  Using a for loop, print every element of the
dailyTemp array in order
•  Use the array length, not the constant 7, to control

the loop if you use the full control version
•  Or use the simpler style of for loop

Mon Tue Wed Thu Fri Sat Sun
70 61 64 71 66 68 62

7

Exercise, p.2
•  In class TemperatureTest, write a static method

to find average weekly temperature:
ppublic static double average(double[] aDouble) {

 // Declare a total variable, initialize it to 0

 // Loop thru aDouble and add each element to the total

 // Use the simple for (double d : aDouble) for loop

 // Divide by the number of elements, return the answer

}

•  In the main() method, call the average method
you just wrote
–  Pass the dailyTemp array as the argument
–  Print the average temperature in main() as:

•  Average weekly temperature: 66

ArrayList Class
•  The ArrayList class IS COMPLETELY DIFFERENT

THAN an array.
–  It s a more flexible way to store data
–  ArrayList can grow automatically as needed

•  Has capacity that is increased when needed
•  Has size() method that returns actual number of

elements in the ArrayList
–  ArrayList can hold elements of different types

•  As long as each is an Object (reference),
•  Technically an ArrayList can t hold a basic type (int,

double, etc.)
•  But, conversion of primitive to an object happens

automatically. This is called auto-boxing .
•  Wrapper classes allow objects (e.g., Boolean or Double)

that hold basic types (e.g. boolean or double)
–  Think airplane vs bicycle as two ways to get from A to B

•  Bicycle is simple, airplane is complex, though both get you there
•  Squeeze hand brake doesn t apply to plane, adjust flaps to bicycle
•  So it is with arrays and ArrayLists: similar but quite different

8

ArrayLists
•  ArrayList class is not in the core Java language

–  It is in package java.util, which you must import:
 import java.util.*; // At top of program

•  ArrayLists are slightly slower than arrays
–  This matters only in large numerical applications

•  ArrayList class has many methods that provide
functionality beyond what arrays provide

•  You can declare an ArrayList as containing
objects of a particular type. Example:
 ArrayList<Point> pList = new

 ArrayList<Point>();

Some Methods of ArrayList
boolean add (Object o) Adds object to end, increases size

by one. Always returns true
void add(int i, Object o) Inserts o at index i moving

subsequent elements to right
Object get(int i) Returns object at index i
int indexOf(Object o) Finds first occurrence of object;

-1 if not found
boolean isEmpty() Returns true if ArrayList has no

objects, false otherwise
void remove (int i) Deletes obj at index i moving

subsequent elements leftward
void remove (Object o) Deletes first occurrence of o

moving subsequent elements
leftward

void set(int i,Object o) Sets element at index i to be the
specified object

int size() Returns size of ArrayList

9

ArrayList Example

iimport java.awt.*; // to use Point class
import java.util.*; // to use ArrayList class

public class ArrayListTest {
 static final int M = 100; // Max coordinate

 public static void main(String args[]) {
 Random r= new Random();
 int numPoints = r.nextInt(20); // Max 20 points
 ArrayList<Point> points = new ArrayList<Point> ();

 for (int i=0; i< numPoints; i++) {
 Point p = new Point(r.nextInt(M), r.nextInt(M));
 points.add(p);
 }

 System.out.println("ArrayList size: + points.size());
 for (Point pt : points)
 System.out.println(pt);
 }
}

Automatic conversion of
primitives to objects

•  Java has boxing and unboxing :
–  When necessary, the compiler converts a primitive (e.g.,

int or double) to the corresponding object type (e.g.,
Integer or Double)

•  This lets us add primitive types to an ArrayList:
 ArrayList<Integer> myAList = new

 ArrayList<Integer>();

 myAList.add(1); // 1 is an int; it s boxed

 myAList.add(3); // same as myAList.add(new

 // Integer(3));

 myAList.add(7);

 // retrieves Integer, unboxes to int

 int iValue = myAlist.get(1);

10

Test Your Knowledge
hich of the following statements is NOT true about 1. W
ArrayLists?

a. ArrayLists are slightly faster than arrays.
b. ArrayLists can store elements of different types.
c. ArrayLists can increase in size to store more elements.
d. ArrayLists have methods to manage their content.

Test Your Knowledge
2. Given the following code fragment:

AArrayList<String> myArrayList = new
ArrayList<String>();

myArrayList.add("One");

myArrayList.add("Two");

myArrayList.add("Three");

myArrayList.add("Four");

 Which of the following expressions will modify myArrayList so it

looks like:

a. myArrayList.remove (myArrayList.get(3));
b. myArrayList.remove (myArrayList.indexOf("Three"));
c. myArrayList.remove (Three);
d. myArrayList.remove (myArrayList.get(2));

11

Test Your Knowledge
3. Given the following code fragment (same as question 2):

AArrayList<String> myArrayList = new
ArrayList<String>();

myArrayList.add("One");
myArrayList.add("Two");
myArrayList.add("Three");
myArrayList.add("Four");

Which of the following expressions will modify myArrayList so it

looks like:

a. myArrayList[3] = "Five"
b. myArrayList[4] = "Five"
c. myArrayList.set (myArrayList.indexOf("Four"), Five);
d. myArrayList.set (myArrayList.indexOf("Five"), Four);

Test Your Knowledge
 4. Given the following code fragment:

AArrayList<Integer> myArrayList = new
ArrayList<Integer>();

myArrayList.add(1);

myArrayList.add(3);

myArrayList.add(7);

 Which of the following expressions will modify myArrayList so it
looks like:

a. myArrayList.add (5);
b. myArrayList.add (2, 5);
c. myArrayList.add (4, 5);
d. myArrayList.add (3, 5);

12

Arrays and ArrayLists

Array ArrayList
•  Capacity fixed at •  Capacity increases as

creation data is added
•  Accessed with z[i] •  Accessed with z.get(i)
•  Constructor: new •  Constructor: new

double[30] ArrayList<Bus>();
•  One data member: •  No data members

z.length
•  No methods •  Many methods – z.size
 (), z.add(), z.get()�
•  Slightly faster •  More flexible

Exercise
 class CourseTest:
rt java.util.*; // 1st line in Cour

•  Create
–  iimpo seTest

–  In main():
•  Create an ArrayList<String> students
•  Add 4 students to the ArrayList:

–  Amy , Bob , Cindy and David
– Add them to the ArrayList directly:

 students.add("Amy");
•  Write method to print elements in the ArrayList

and its size
 public static void printOutArrayList(// Argument) {
 // Code goes here }
•  Call printOutArrayList() method from main()

–  Pass the ArrayList as the argument
•  Your output should be:

Amy
Bob
Cindy
David
Size: 4

MIT OpenCourseWare
http://ocw.mit.edu

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

