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1.00 Lecture 14 

Inheritance, part 2 

Reading for next time: Big Java: sections 9.1-9.4 

Exercise: Plants 

•  Create a base class PPlant: (File->New->Class) 
–  Private Strings genus, species, boolean isAnnual 
–  Write the constructor 
  public Plant( …) { … } 

•  Create a derived class Tree: (File->New->Class)
–  Class declaration extends ________ 
–  Private data Strings barkColor, leafType 
–  Write the constructor 
 public Tree( …) { … } 
•  Use super( … ) to call its superclass constructor 
•  All trees are perennials 
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Plant Exercise, p.2 

  Create a derived class FFlower: (File->New->Class) 
–  Class declaration extends _______ 
–  Private data String petalColor 
–  Write constructor 

  Create a derived class Rose: (File->New->Class) 
–  Class declaration extends _____ 
–  Private data boolean isHybrid 
–  Write constructor 
–  All roses are perennials 

•

•

Exercise, p.3 
•  Write a class PlantTest 

–  It has just a main() method, which: 
•  Creates a Plant, Tree, Flower, Rose 
•  Genus and species examples: 

–  Rosa villosa (rose) 
–  Quercus alba (white oak) 
–  Narcissus jonquilla (daffodil) 
–  Nabalus boottii (Boott s rattlesnake root) 

•  The other data is: 
–  Bark color= brown, leaf type= rounded for oak 
–  Petal color= red for rose, yellow for daffodil 
–  Rosa villosa is not hybrid 
–  Nabalus is perennial, Narcissus is annual 

–  Step through the debugger to see how the 
constructors are called (Run->Debug as) 



1/21/12 

3 

Abstract classes 
•  Classes can be very general at the top of a class 

hierarchy.  
–  For example, MIT could have a class PPerson, from 

which Employees, Students, Visitors, Faculty 
inherit 

–  Person is too abstract a class for MIT to ever use in a 
computer system but it can hold name, address, 
birthdate, etc. that is in common to all the subclasses 

–  We can make Person an abstract class: Person objects 
cannot be created, but subclass objects, such as 
Student, can be 

•  Example: 
public abstract class Person { 
 private String name; 
 protected String address; 
 public Person(String n, String a) { 
  name= n; address= a; }  
 // And additional methods} 

Abstract classes, p.2 

•  Another example (leading to graphics in the next 
lectures) 
–  Shape class in a graphics system 
–  Shapes are too general to draw; we only know how to 

draw specific shapes like circles or rectangles 
–  Shape abstract class can define a common set of 

methods that all shapes must implement (e.g., draw()), 
so the graphics system can count on certain things 
being available in every concrete class 

–  Shape abstract class can implement some methods that 
every subclass must use, for consistency: e.g., 
getObjectID(), getForegroundColor() 
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Shape class 
ppublic abstract class Shape { 

 public abstract void draw(); 

 // Drawing function must be implemented in each concrete  

 // derived class but no default is possible: abstract 

 

 public void setVisible(boolean v) { … } 

 // setVisible function must be implemented in each derived 

 // class and a default is available: non-abstract method 

 

 public final int objectID() { … } 

 // Object ID function: each derived class must have one  

 // and must use this implementation: final method 

 

 …}; 

 

public class Square extends Shape {…}; 

public class Circle extends Shape {…}; 

Abstract class, method 
•  Shape is an abstract class (keyword) 

–  No objects of type Shape can be created 

•  Shape has an abstract method draw() 
–  draw() must be redeclared by any concrete (non-

abstract) class that inherits it 
–  There is no definition of draw() in Shape 

–  This says that all Shapes must be drawable, but the 
Shape class has no idea of how to draw specific shapes 
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Non-abstract method 

•  SShape has a non-abstract method setVisible() 
–  Each derived class may define its own setVisible method 

using this signature, overriding the superclass method 
–  Or it may use the super class implementation as a default 

•  If it overrides the superclass method, it must have 
exactly the same signature as the superclass 
method 
–  If you write a method with same name but different 

arguments, it s considered a new method in the subclass 
•  Be careful. If new derived classes are added and you 

fail to review and, if needed, redefine non-abstract 
methods, the default will be invoked but may do the 
wrong thing  
–  E.g., kangaroos 

Final method 
•  Shape has a final method objectID 

–  Final method is invariant across derived classes 
–  Behavior is not supposed to change, no matter how 

specialized the derived class becomes 
•  Super classes should have a mix of methods 

–  Don t make all abstract super class methods abstract 
–  If you can make methods final, do so 

An aside: final classes 
•  To prevent someone from inheriting from your class, declare it 

final: 
 public final class Grad extends Student { … 

•  This would not allow SpecGrad to be built 
•  Class can have abstract, final or no keyword 
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Exercise: Vehicle 
ppublic abstract class Vehicle {  // In your download 

 private int ID; 

 protected double mass; 

 protected double maxSpeed; 

 protected String name; 

 private static int nextID= 1; 

 

 public Vehicle(double mass, double maxSpeed, String name) { 

  ID++; 

  this.mass = mass; 

  this.maxSpeed = maxSpeed; 

  this.name = name; 

} 

 

–  Write abstract getSafetyRating() method 
–  Write non-abstract getMaxEnergy() method 

•  Returns 0.5*mass*maxSpeed2; used to design brakes 

–  Write final method getID() that returns ID 

Exercise, p.2 
concrete Jeep class 
ds Vehicle 

•  Write a 
–  Exten
–  Has additional private variable: double maxGrade (0-1.0) 
–  Write constructor 
–  Write getSafetyRating() method 

•  Returns max( (100- 100*maxGrade – 0.5*maxSpeed), 0) 
•  Must have same signature as base class (omit  abstract) 
•  What happens if you don t write one? 

–  Write getMaxEnergy() method 
•  Return 0.5*mass*maxSpeed2 + 9.8*mass*maxGrade*100 

–  This reflects jeep use on steep grades 

•  You are overriding the superclass method that Jeep inherits 
from Vehicle 

•  You may call super.getMaxEnergy() but it is not mandatory 
•  What happens if you don t write one? 

–  Try to write a getID() method 
•  What happens? 
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Exercise, p.3 

•  Write a class VehicleTest with main() that: 
–  Tries to create a Vehicle object 

•  What happens? Comment it out if it doesn t work. 
–  Creates a Jeep object 

•  Mass 2000 kg, maxSpeed 30 m/sec, max grade 0.2, jeep  
–  Prints its safety rating 
–  Prints its max energy 
–  Prints its ID 

Fun with animals 
public class Bird { 

  public void fly();   // Birds can fly 

 // Method body omitted 

  }; 
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Fun with animals 
ppublic class Bird { 

  public void fly();   // Birds can fly 

 // Method body omitted 

  }; 

 

public class Ostrich extends Bird {  // Ostriches are birds

 // Class body omitted 

  }; 

 

 

  

Fun with animals 
public class Bird { 

  public void fly();   // Birds can fly 

 // Method body omitted 

  }; 

 

public class Ostrich extends Bird {  // Ostriches are birds 

 // Class body omitted  

  }; 

 

//  Problems: 

//  If superclass method fly() is final, Ostriches must fly 

 

//  If superclass method fly() is abstract or non-abstract, 

//  Ostrich s fly() can print an error, etc. It s clumsy 

 

//  With inheritance, every subclass has every method and 

//  data field in the superclass. You can never drop 

//  anything. This is a design challenge in real systems. 
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Possible solutions 

  Bird      Bird 
 
Ostrich  Robin  FlyingBird  NonFlyingBird 
 

         Robin   Ostrich 
 
Decision depends on use of system: 

 If you re studying feet, difference between 
 flying and not flying may not matter 
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More issues 
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More issues 

Quadrilateral 

Rectangle 

moveCorner() 

moveCorner() 

Must override the moveCorner() method in subclasses to move 
multiple corners to preserve the correct shape 
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