
1/21/12

1

1.00 Lecture 14

Inheritance, part 2

Reading for next time: Big Java: sections 9.1-9.4

Exercise: Plants

•  Create a base class PPlant: (File->New->Class)
–  Private Strings genus, species, boolean isAnnual
–  Write the constructor
 public Plant(…) { … }

•  Create a derived class Tree: (File->New->Class)
–  Class declaration extends ________
–  Private data Strings barkColor, leafType
–  Write the constructor
 public Tree(…) { … }
•  Use super(…) to call its superclass constructor
•  All trees are perennials

1/21/12

2

Plant Exercise, p.2

  Create a derived class FFlower: (File->New->Class)
–  Class declaration extends _______
–  Private data String petalColor
–  Write constructor

  Create a derived class Rose: (File->New->Class)
–  Class declaration extends _____
–  Private data boolean isHybrid
–  Write constructor
–  All roses are perennials

•

•

Exercise, p.3
•  Write a class PlantTest

–  It has just a main() method, which:
•  Creates a Plant, Tree, Flower, Rose
•  Genus and species examples:

–  Rosa villosa (rose)
–  Quercus alba (white oak)
–  Narcissus jonquilla (daffodil)
–  Nabalus boottii (Boott s rattlesnake root)

•  The other data is:
–  Bark color= brown, leaf type= rounded for oak
–  Petal color= red for rose, yellow for daffodil
–  Rosa villosa is not hybrid
–  Nabalus is perennial, Narcissus is annual

–  Step through the debugger to see how the
constructors are called (Run->Debug as)

1/21/12

3

Abstract classes
•  Classes can be very general at the top of a class

hierarchy.
–  For example, MIT could have a class PPerson, from

which Employees, Students, Visitors, Faculty
inherit

–  Person is too abstract a class for MIT to ever use in a
computer system but it can hold name, address,
birthdate, etc. that is in common to all the subclasses

–  We can make Person an abstract class: Person objects
cannot be created, but subclass objects, such as
Student, can be

•  Example:
public abstract class Person {
 private String name;
 protected String address;
 public Person(String n, String a) {
 name= n; address= a; }
 // And additional methods}

Abstract classes, p.2

•  Another example (leading to graphics in the next
lectures)
–  Shape class in a graphics system
–  Shapes are too general to draw; we only know how to

draw specific shapes like circles or rectangles
–  Shape abstract class can define a common set of

methods that all shapes must implement (e.g., draw()),
so the graphics system can count on certain things
being available in every concrete class

–  Shape abstract class can implement some methods that
every subclass must use, for consistency: e.g.,
getObjectID(), getForegroundColor()

1/21/12

4

Shape class
ppublic abstract class Shape {

 public abstract void draw();

 // Drawing function must be implemented in each concrete

 // derived class but no default is possible: abstract

 public void setVisible(boolean v) { … }

 // setVisible function must be implemented in each derived

 // class and a default is available: non-abstract method

 public final int objectID() { … }

 // Object ID function: each derived class must have one

 // and must use this implementation: final method

 …};

public class Square extends Shape {…};

public class Circle extends Shape {…};

Abstract class, method
•  Shape is an abstract class (keyword)

–  No objects of type Shape can be created

•  Shape has an abstract method draw()
–  draw() must be redeclared by any concrete (non-

abstract) class that inherits it
–  There is no definition of draw() in Shape

–  This says that all Shapes must be drawable, but the
Shape class has no idea of how to draw specific shapes

1/21/12

5

Non-abstract method

•  SShape has a non-abstract method setVisible()
–  Each derived class may define its own setVisible method

using this signature, overriding the superclass method
–  Or it may use the super class implementation as a default

•  If it overrides the superclass method, it must have
exactly the same signature as the superclass
method
–  If you write a method with same name but different

arguments, it s considered a new method in the subclass
•  Be careful. If new derived classes are added and you

fail to review and, if needed, redefine non-abstract
methods, the default will be invoked but may do the
wrong thing
–  E.g., kangaroos

Final method
•  Shape has a final method objectID

–  Final method is invariant across derived classes
–  Behavior is not supposed to change, no matter how

specialized the derived class becomes
•  Super classes should have a mix of methods

–  Don t make all abstract super class methods abstract
–  If you can make methods final, do so

An aside: final classes
•  To prevent someone from inheriting from your class, declare it

final:
 public final class Grad extends Student { …

•  This would not allow SpecGrad to be built
•  Class can have abstract, final or no keyword

1/21/12

6

Exercise: Vehicle
ppublic abstract class Vehicle { // In your download

 private int ID;

 protected double mass;

 protected double maxSpeed;

 protected String name;

 private static int nextID= 1;

 public Vehicle(double mass, double maxSpeed, String name) {

 ID++;

 this.mass = mass;

 this.maxSpeed = maxSpeed;

 this.name = name;

}

–  Write abstract getSafetyRating() method
–  Write non-abstract getMaxEnergy() method

•  Returns 0.5*mass*maxSpeed2; used to design brakes

–  Write final method getID() that returns ID

Exercise, p.2
concrete Jeep class
ds Vehicle

•  Write a
–  Exten
–  Has additional private variable: double maxGrade (0-1.0)
–  Write constructor
–  Write getSafetyRating() method

•  Returns max((100- 100*maxGrade – 0.5*maxSpeed), 0)
•  Must have same signature as base class (omit abstract)
•  What happens if you don t write one?

–  Write getMaxEnergy() method
•  Return 0.5*mass*maxSpeed2 + 9.8*mass*maxGrade*100

–  This reflects jeep use on steep grades

•  You are overriding the superclass method that Jeep inherits
from Vehicle

•  You may call super.getMaxEnergy() but it is not mandatory
•  What happens if you don t write one?

–  Try to write a getID() method
•  What happens?

1/21/12

7

Exercise, p.3

•  Write a class VehicleTest with main() that:
–  Tries to create a Vehicle object

•  What happens? Comment it out if it doesn t work.
–  Creates a Jeep object

•  Mass 2000 kg, maxSpeed 30 m/sec, max grade 0.2, jeep
–  Prints its safety rating
–  Prints its max energy
–  Prints its ID

Fun with animals
public class Bird {

 public void fly(); // Birds can fly

 // Method body omitted

 };

1/21/12

8

Fun with animals
ppublic class Bird {

 public void fly(); // Birds can fly

 // Method body omitted

 };

public class Ostrich extends Bird { // Ostriches are birds

 // Class body omitted

 };

Fun with animals
public class Bird {

 public void fly(); // Birds can fly

 // Method body omitted

 };

public class Ostrich extends Bird { // Ostriches are birds

 // Class body omitted

 };

// Problems:

// If superclass method fly() is final, Ostriches must fly

// If superclass method fly() is abstract or non-abstract,

// Ostrich s fly() can print an error, etc. It s clumsy

// With inheritance, every subclass has every method and

// data field in the superclass. You can never drop

// anything. This is a design challenge in real systems.

1/21/12

9

Possible solutions

 Bird Bird

Ostrich Robin FlyingBird NonFlyingBird

 Robin Ostrich

Decision depends on use of system:

 If you re studying feet, difference between
 flying and not flying may not matter

More issues

Quadrilateral

Rectangle

asi122
Line

asi122
Line

asi122
Line

asi122
Line

asi122
Line

asi122
Line

asi122
Line

asi122
Line

asi122
Line

asi122
Line

asi122
Rectangle

asi122
Line

asi122
Line

1/21/12

10

More issues

moveCorner()

Quadrilateral

Rectangle

More issues

Quadrilateral

Rectangle

moveCorner()

moveCorner()

1/21/12

11

More issues

Quadrilateral

Rectangle

moveCorner()

moveCorner()

Must override the moveCorner() method in subclasses to move
multiple corners to preserve the correct shape

MIT OpenCourseWare
http://ocw.mit.edu

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

