
1

1.00 Lecture 2

Interactive Development
Environment: Eclipse

Reading for next time: Big Java: sections 4.1-4.5

What s an IDE?
•  An integrated development environment

(IDE) is an environment in which the user
performs development tasks:
–  Creating and naming files to store a program
–  Writing code in Java or another language
–  Compiling code (checking syntax but not logical

correctness, generating executable program)
–  Reviewing and testing the code with the debugger
–  And many other tasks: version control, projects,

code generation, etc.
•  Eclipse is a popular Java IDE

–  You must use it in 1.00 homework, lecture, and
recitation

–  People write better software with an IDE

2

What Does an IDE Do?
What does an IDE provide?
–  Visual representation of program components
– 

• 

Ability to browse existing components easily, so you can
find ones to reuse

–  Quick access to help and documentation to use existing
libraries and tools versus writing your own

–  Better feedback and error messages when there are errors
in your program

–  A debugger, which is not primarily used to debug, but is
used to read and verify code

–  Communication between programmers in a team, who
share a common view of the program

•  Your programs in 1.00 are small, but Eclipse will
make life much easier
–  In large projects, the benefits are greater still

Starting Eclipse

•  Start Eclipse by double clicking the icon on your
desktop.

•  Identify all the interface areas labeled on the next
slide.
–  The Main Window is the command center, holding

menus, tabs, and buttons.
–  The Explorer allows you to manage files and sets of files

(projects) that form programs.
–  The working area holds editor, compiler, outline, output

or debugger windows as appropriate.

3

Anatomy of Eclipse
Main Window

xplorer

Editor

Console (output)

O
utline

Creating a Project
e File-> New-> Java Project
Java Project

Choos
A New

page appears

Project name: Lecture2

Make sure Use project folder is checked
Your project folder will be in folder eclipse/workspace
Hit Finish

Courtesy of The Eclipse Foundation. Used with permission.

Courtesy of The Eclipse Foundation. Used with permission.

Explorer

4

Creating a Class
> Class (or click New icon) File-> New-

Type class name: NauticalMil

Make sure public static
void main� is checked

Hit Finish

main() is a method

e

The NauticalMile Program

•  A nautical mile is defined as the average length of
a 1 minute arc of latitude on the earth's surface.

•  The circumference of the earth is 24859.82 statute
miles

•  A statute mile contains 5280 feet
•  The circumference is 360 degrees, and each

degree contains 60 minutes
•  Calculate the length of a nautical mile in feet as:

_number of feet in circumference__ nm=
number of minutes in circumference

•  Be careful about data types and division!
•  Output your answer using System.out.println(�);

Courtesy of The Eclipse Foundation. Used with permission.

asi122
Line

asi122
Line

5

NNauticalMile.java

 public class NauticalMile {

 public static void main(String[] args) {

 double circum = 24859.82*5280;

 int minutesInCircle = 360*60; // This is a comment

 double nautMile = circum / minutesInCircle;

 System.out.println(

 "Feet in a nautical mile = " + nautMile);

 }

} // Java is case sensitive

  Write this Java program using Eclipse
•  Delete the Eclipse-generated comments at top

  Save it (ctrl-S or File->Save); Eclipse will compile it
  If you get any errors, fix them
  After it compiles, make some errors, experiment

•

•
•
•

Compile Time Errors

•  Remove the semicolon from the end of the line
that starts with
 double circum

•  Move the mouse over the wavy line. You should
see:
 Syntax error, insert ";" to complete
BlockStatements

•  There is also a red box on the right and a red
circle on the left

•  Fix the error
•  Remove the semicolon from the next line

–  The error message is slightly different

6

Running NNauticalMile in Eclipse

•  Once you re able to save with no errors, select
Run-> Run As-> Java Application

•  Or use the green circle icon
•  Save changes if prompted (OK)
•  Part of working area may change from problem

view to console view

Neat Things About Eclipse
•  Key words are highlighted in purple.

–  Strings are highlighted in blue
•  Click on a variable to see all occurrences in your file

–  Refactor -> Rename if you want to change its name
•  Java classes have tool tips that display info when

you place your mouse over them (e.g., System)
•  Eclipse will format your file

–  Mess up the alignment of the text lines.
–  Then right click in the editor window and select

 Source-> Format or Source-> Correct Indentation.
–  Or use ctrl-A, ctrl-I.

•  Get full documentation of Java methods
–  Place cursor on any built-in Java method or class

•  String or System, for example
–  Hit Navigate-> Open Attached Javadoc

•  Expand explorer view to see variables, methods

7

Reading NNauticalMile

•  Set a breakpoint to stop your program at or near
its beginning
–  Right click on the left margin of the text editor at the

desired line (double circum= …)
–  Select Toggle Breakpoint

•  Select Run->Debug As -> Java Application
–  Or use the toolbar (bug icon) , but be careful what it runs

•  Eclipse displays the Debug Perspective
–  Your program stops at the breakpoint line

Eclipse Debug Perspective

Main Window

Status Variables

Program code

Console output

Call
stack

Courtesy of The Eclipse Foundation. Used with permission.

8

Stepping Through
•  Now step through NauticalMile line by line

–  Use the Step Over icon or hit F6

–  Later we ll use Step Into (F5) and Step Return (F7)
–  We can use Resume (F8) to run to the next breakpoint
–  And we use Terminate to quit the program

•  Variable values display in the Variables window

Stepping Through, 2

•  The Step buttons are a functional family unit:
–  Step Into (F5) means stop at every line of code including

every step of methods that are invoked.
–  Step Over (F6) means stop at every line of code in the

current method but execute method calls in one step.
–  Step Return (F7) means run everything in the current

method and stop when the method returns. In other
words, run to the end of the method.

–  (All we have is a single main() method right now, but
we ll have a lot more soon.)

•  Click Step Over

Courtesy of The Eclipse Foundation. Used with permission.

asi122
Line

asi122
Line

asi122
Line

asi122
Line

asi122
Line

asi122
Line

asi122
Line

9

Examining Variable Values
•  In the top right frame of the Debugging View,

you'll see the variables
•  Click Step Over once more to advance another

line.
–  You should see that you just defined another variable,

mminutesInCircle.
•  Set another breakpoint at the last line

(System.out…)
•  Click the Resume button Terminate

•  The program stops at the last line.
•  Click Resume or Step Over

–  The program output appears, and the program exits.

Breakpoints
•  What if you are trying to figure out what is wrong

with a homework program that s about 100 lines
long?
–  Set a breakpoint at the beginning.
–  Run->Debug As->Java Application
–  Step Over line by line looking at variable values until

you find an error
–  Go back to Java Perspective, fix the error, save the file

•  Don t fix it in Java Debug Perspective—less confusion
–  Set a breakpoint at the line you fixed
–  Run->Debug As-> Java Application (or toolbar icon)
–  The program will run to the line you fixed
–  Resume using Step Over from there

•  You can right click and select Toggle
Breakpoint to get rid of unneeded ones

Courtesy of The Eclipse Foundation. Used with permission.

asi122
Line

asi122
Line

10

Exiting the Debugger

•  Sometimes you want to exit the debugger withou
allowing your program to run to completion.

•  Just click the Terminate button (red square) near
the Resume button

•  Occasionally you need to clean up the Status
(Debug) window in the upper left frame
–  Right click in the Debug Window
–  Select Remove All Terminated
–  If something is still there, right click on it
–  Select Terminate and Remove

t

Managing Files in a Project
•  Adding files:

–  Same as the first one: File->New Class and so on.
•  Copying files:

–  Ctrl-C, Ctrl-V and give new name
•  Deleting files:

–  Right click on file and delete
•  Moving files:

–  Drag and drop
•  Downloading files

–  Navigate to zip file, download to directory on laptop
–  Unzip the file in Download or 100 folder
–  Drag and drop the .java files into Eclipse browser

•  Uploading files
–  Zip the .java files in the workspace folder, not .class files
–  Upload files. (Practice today, doesn t count.)

11

Exercise
•  A bicyclist goes up a hill at 30 km/hr and comes down the

same hill at 90 km/hr.
•  Find and output the cyclist s average speed for this trip

–  It is not 60 km/hr

•  Also find and output the average speed if the bicyclist goes
up at 20 km/hr and comes down at 100 km/hr

•  Before writing any code, make sure you understand the
problem and can write the equation needed for the solution

•  To use double values rather than int values, as this
program requires, write all values as 1.0, 30.0, etc. rather
than 1, 3, etc.

•  File -> New-> Class -> Bicycle
•  Write your code in the main() method
•  Include comments that document your logic
•  Save/compile and run your code. Step with the debugger.

MIT OpenCourseWare
http://ocw.mit.edu

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

