
1

1.00 Lecture 28

Threads

Reading for next time: Big Java 20.4

Threads
•  What if our Java program must do a lot of

computation on the sensor inputs?
–  And listen for sensor input changes when they occur,

possibly from many sensors
–  And respond to user requests through the Swing GUI,

such as button clicks or other input
•  How can it do multiple things at the same time ?

–  If it s computing, will it delay processing or lose sensor
events, or Swing events?

•  Java (and other) programs run in their own
processes, fully isolated from each other
–  Two programs running on your laptop don t interact

•  We need to run mini-programs within the same
program, but they must share data and logic
–  Threads are mini-processes within a process

2

Threads
•  Most computers have multiple cores or

processors that execute more than one piece of
code or "thread " at a time
–  Even if they only have a single core/processor, they can

implement threads by rapidly switching between tasks,
giving each thread a small execution slice before
switching to another task. All threads appear to proceed
in parallel.

•  Threads are different from processes
–  Processes are expensive but safe. Processes are so well

insulated from each other that it is both complex and
expensive to communicate between them.

–  Threads are cheap, but different threads running in the
same process are not well-insulated from each other.

Processes

computer runs in its own process.
Process –
•  Each program on your
•  Operating system s way of ensuring one program uses its own

memory, and each program has a reasonable amount of processing
time.

•  Safe - the separation of memory spaces allow one program to
continue running even if another program writes garbage into its own
memory space (and crashes). It also provides a level of security.

Time

Process 1: Email

Process 2: Browser

Process 3: Excel

Process 4: Eclipse

(Single processor example. If you have two, two processes can run simultaneously)

Image by MIT OpenCourseWare.

3

Threads
Threads –
•  If a process is an operating system s way of interleaving

programs�
•  A thread is a program s way of interleaving sections of code.

Writing a Thread, Option 1

•  Inherit from the Thread class and override its method
ppublic void run():

 public class SensorManager extends Thread {

 public void run() {
 // Code executed in the Thread goes here
 // run() is just like main(): Thread starts here
 }
 }

•  In main() or other method, create a Thread instance
and start it:

 Thread t = new SensorManager();
 t.start();

Time

Process 4 (Eclipse/Java):

Thread 1 (Swing Events):

Thread 2 (Main Method):

Thread 3 (Sensor Events):

(Single processor example. If you have two, two threads can run simultaneously)

Zoom In

Image by MIT OpenCourseWare.

4

Writing a Thread, Option 2
•  If the object you want to place in a thread already

inherits from a superclass, use an interface
 public interface Runnable {
 public void run();

 }
•  Modify the class to implement Runnable, e.g.,

public class SensorManager extends JFrame

 implements Runnable {

 // constructors and other methods go here

 public void run() {

 // code executed in the Thread goes here

 }

}
•  In main() or other method:
 Thread t = new Thread(new SensorManager());

 t.start();

Find Status of Thread
•  In main() or other method:

// Ask if thread is executing

if (t.isAlive())

 // code (can t use t s results yet)

else

 // code (assumes t has completed)

•  You can also wait for a thread to finish:
// In a method of some thread other than t

t.join(); // waits until t completes

// code (assumes t has completed)

•  To stop a thread, use:
 t.interrupt();

 // Thread t catches InterruptedException, returns

 // We don t cover this in 1.00.

5

Computing with threads
•  Program finds sum of set of numerical integrals of

cylinder volumes
–  We cover numerical integration in lecture 32
–  In this lecture, we treat it as just an expensive computation
–  We scale the output, so we always get approximately π

•  Reads radius of each cylinder
–  Must respond to input in timely fashion, even if integral

takes a long time to compute
–  If program doesn t respond quickly, either the user will find

the application unusable, or input events may be dropped
•  Maximum event queues are often short

–  We use Scanner and System.in for keyboard input
•  JOptionPane is a Swing object in its own thread, which would

complicate the example
–  We use floats, not doubles, to simplify one ugly issue

•  We discuss it (synchronization) in the next lecture

iim

Cylinder integral without threads
port java.util.*;

public class Cylinder {

 private static final int ITER = 20000000;

 private float radius;

 public Cylinder(float r) { radius= r; }

 public float circularIntegral() {

 float sum= 0.0F;

 for (int i= 0; i < ITER; i++) {

 // Math.random() returns double d: 0 <= d <= 1

 float x= 2*radius*(float)Math.random() - radius;

 float y= 2*radius*(float)Math.random() - radius;

 float f= 1.0F; // f(x,y)—constant here

 if ((x*x + y*y) < radius*radius) // If in region

 sum += f; // Increment integral sum

 }

 System.out.println("r "+ radius + " i " + 4.0F*sum/ITER);

 return 4.0F*sum/ITER; // Integral value * 4 (pi)

 }

6

Cylinder without threads, p.2
 public static void main(String[] args) {

 Scanner in= new Scanner(System.in); // Keyboard input

 float integral= 0.0;

 for (int i= 0; i < 6; i++) {

 System.out.println("Enter radius ");

 float radius= in.nextFloat(); // Keyboard input

 Cylinder t = new Cylinder(radius);

 integral += t.circularIntegral();

 }

 System.out.println("integral " + integral);

 System.out.println("Done");

 }

}

// Run this to see that it responds slowly. Enter r=1 each time

// Eclipse is flaky in not putting the cursor at end of prompt.

Exercise 1: Cylinder with threads
•  CylinderThread uses threads
–  It splits the integration work across 6 threads
–  The threads each contribute their part of the

integral to a static variable in CylinderThread
–  In main()

•  Each thread is created with a nnew keyword
•  Each thread is then started with start()
•  Each thread starts by executing its run() method
•  Which calls method circularIntegral()
•  Which increments a static variable that holds the sum

–  We enter the radius for each of the 6 parts
•  This could also come from a sensor or Swing event

–  We will complete CylinderThread

7

ii

Exercise 1a: Cylinder with threads
mport java.util.*;

public class CylinderThread ____________ { // Complete this line

 private static final int ITER = 20000000;

 private float radius;

 private static float integral; // New; holds sum

 public CylinderThread(float r) { super(); radius= r;} // Diff

 public float circularIntegral() {

 float sum= 0.0F;

 for (int i= 0; i < ITER; i++) {

 float x= 2*radius*(float)Math.random() - radius;

 float y= 2*radius*(float)Math.random() - radius;

 float f= 1.0F; // f(x,y)—constant here

 if ((x*x + y*y) < radius*radius) // If in region

 sum += f; // Increment integral sum

 }

 System.out.println("r "+ radius + " i " + 4.0F*sum/ITER);

 integral += 4.0*sum/ITER; // New, adds to sum

 return 4.0F*sum/ITER; // Integral value * 4 (pi)

 }

Exercise 1b: Cylinder with threads
 // Write the run() method. It s like a main() method.

 public static void main(String[] args) {

 Scanner in= new Scanner(System.in);

 for (int i= 0; i < 6; i++) {

 System.out.println("Enter radius ");

 float radius= in.nextFloat();

 CylinderThread t = new CylinderThread(radius); //New

 t.start(); // Uncomment this //New

 }

 System.out.println("integral: " + CylinderThread.integral);

 System.out.println("Done");

 }

}

// When you are done, compile and run this.

// It prompts for keyboard input quickly, unlike Cylinder

// But… it does not give the correct answer.

8

What happens?

main()

t0 t1 t2 t3 t4 t5 main

System.out.println(i)

integral

hread

time

T

Exercise 2

•  Correct CylinderThread, which has an error:
–  It splits the integration work across 6 threads
–  The threads each contribute their part of the integral to a

static variable in CylinderThread
–  However, the threads may not have all completed when

main() outputs the answer
•  Use isAlive() or join() to wait until all parts of the

integral have been computed
–  You will need to keep track of all the thread objects you

created, perhaps in an array or ArrayList
–  join() and isAlive() throw InterruptedException
–  You must put calls to them in a try-catch block

•  Your changes are all in main()

9

Interface Runnable
•  Suppose Cylinder extends another class

–  It still contains the integration method that takes a long
time to compute

–  So we still want to put each computation in a separate
thread

•  We use the following class definition:
ppublic class Cylinder2 extends EngrComponent

implements Runnable {

–  Instead of: extends Thread
•  We use the following constructor:
 Thread t = new Thread(new Cylinder2(radius));

•  Instead of:
 CylinderThread2 t = new CylinderThread2(radius);

Exercise 3

•  Modify the solution to exercise 2 to implement
Runnable instead of extending Thread. The
changes are minor:
–  Copy and rename the exercise 2 solution to a different

class name (e.g., CylinderRunnable)
–  Inherit from EngrComponent and Runnable

•  Change class definition, as on previous slide
•  Modify constructor to also call superclass constructor

–  main(): change use of constructor, as on previous slide

public class EngrComponent { // In download

 private int ID;

 private static int nextID= 0;

 public EngrComponent() {ID= nextID++; }

 public final int getID() { return ID;}

}

MIT OpenCourseWare
http://ocw.mit.edu

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

