
2/3/12

1

1.00 Lecture 6

Methods and Scope

Reading for next time: Big Java: sections 2.6-2.10, 3.1-3.8

Java Methods

•  Methods are the interface or communications
between program components
–  They provide a way to invoke the same operation from

many places in your program, avoiding code repetition
–  They hide implementation details from the component

using the method
–  Variables defined within a method are not visible to

users of the method; they have local scope within the
method

–  The method cannot see variables in the component that
calls it either. There is logical separation between the
two, which avoids conflicts in variable names

From last time

2/3/12

2

Method example
blic class MethodExample {

 public static void main(String[] args) {

 double boxWeight= 50;

 double boxCube= 10;

 String boxID= Box A ;

 double density= getDensity(boxWeight, boxCube);

 System.out.println("Density: "+ density);

 printBox(boxWeight, boxCube); // Prints density 2nd time

 }

 public static double getDensity(double bw, double bc) {

 double result= bw/bc; // 'result' could be 'density'

 return result;

 }

 public static void printBox(double w, double c) {

 System.out.println("Box weight: "+w+" cube: "+c);

 System.out.println(" Density: "+getDensity(w,c));

 System.out.println(ID: +boxID); // No access to ID

 } // Won t compile!

ppu

//

} From last time

Passing Arguments (from last time)
 main(�){
 double boxWeight= 50;
 double boxCube=10;
 String boxID= Box A ;
 double density=getDensity
 (boxWeight, boxCube);
 �

double getDensity(double bw, double bc)
{ // Method makes its own copy

 // of arguments bw and bc
double result= bw/bc;
return result;}

Argument 1 Argument 2 Return value

Communi-
cation only
via arg list,
return value

From last time

boxWeight boxCube

bw bc

density Arguments
matched by
position

Data type,
meaning
must match

2/3/12

3

Method exercise

•  Write a class MethodExercise
–  main() method:

•  Declares String name, int age, double height
•  Sets variables to your name, age, height
•  Calls isOldEnough() method
•  Prints out whether old enough (true or false)
•  Calls printInfo() method

–  Method isOldEnough() returns true if age >=
21, false otherwise

–  Method printInfo() prints name, age, height
–  Choose appropriate arguments, return values

Method exercise continued
ppublic class MethodExercise {
 public static void main(String[] args) {
 …
 }

 public static boolean isOldEnough(int a) {
 …
 }

 public static void printInfo(String n, int a, double h) {
 …
 }

}

// Exercise, continued:
// Compute BMI= 703 * weight / (height)2 in its own method

// (Weight in pounds, height in inches)
// Declare and initialize weight variable in main()
// Output BMI in printInfo(). Change printInfo arguments.

2/3/12

4

AvgTest Exercise: step 1

•  In Eclipse, create a new class AvgTest
–  Have Eclipse write the main() signature but

leave it empty for now
•  After the main method, write methods to:
–  Return the average of three doubles x1, x2, x3
–  Return the maximum of three doubles x1, x2, x3
–  The methods will be:
 public static double average3(…) { … }

 public static double maximum3(…) { … }

•  In maximum3(), compare pairs of values
•  There s an easy way and a hard way

AvgTest Exercise: step 2

•  In the main method, which is currently
empty:
–  Define two sets of variables (doubles):

•  10, 17, 55 (r1, r2, r3)
•  59, -3, 85 (r4, r5, r6)

–  Call average3() and maximum3() on the first 3
doubles (10, 17, 55)

–  Output (System.out.println) the results
–  Call average3() and maximum3() on the next 3

doubles (59, -3, 85)
–  Output (System.out.println) the results

2/3/12

5

Pass by copy
•  In Java, arguments are passed from one method

to another by copy (also called by value):
–  The called method makes a copy of the arguments. Even

if it changes their values, they do not change in the
calling method.

–  What is the output (4 values) of the following program?
ppublic class TripleTest {

 public static void main(String[] args) {

 double z=5.0;

 System.out.println("z main 1: "+z);

 triple(z);

 System.out.println("z main 2: "+z);

 }

 public static void triple(double z) {

 System.out.println("z 1: "+z);

 z *= 3;

 System.out.println("z 2: "+z);

 } }

Scope

lready seen that methods have differe•  You ve a nt
scope:
–  A variable of the same name in two methods is two

separate variables
  Scope of local variables, the only kind we ve

seen so far, is defined by additional rules
  And, there are other kinds of variables, with their

own scope rules
  We ll revisit all this later, but for now, we focus

on local variable scope

•

•

•

2/3/12

6

Local Variable Scope
•  Local variables (in a method or block)

–  Exist from point of definition to end of block
•  Blocks are defined by curly braces{ }
•  Blocks are most often used to define:

–  Method body
–  Multiple statements in if-else and loop operations

–  Local variables are very restricted:
•  Other methods cannot see local variables even in the same

class.
•  Variables of the same name in different methods are

different variables
•  More generally, variables of the same name in different

blocks are different variables
–  Arguments to a method are local variables:

•  The method copies them upon receipt and they live until
the ending curly brace of the method

–  Variables defined in for, while and do-while statements
exist in the loop body

Exercise
les d, e, i, j exist (i is

 }

}

•  Mark where variab given as exampl
ppublic class ScopeTest0 {

 public static void main(String[] args) {

i int i= 1;

 double d= 0.0;

 for (int j= 0; j < 5; j++) {

 double e= j;

 d += i;

 e += j;

 System.out.println("d: "+d+" e: "+e);

 }

 if (d > 0) {

 int j= 2;

 double e= 4.0;

 System.out.println("If line d: "+d+" e: "+e);

 }

 double e= 0.0;

 e += d + i;

 System.out.println("Last line d: "+ d+" e: "+e);

e)

2/3/12

7

Scope exercise

•  The following code doesn t work. Fix it.
 public static int test1() {
 for (int i=0; i < 10; i++) {

 if (Math.sqrt(i) > 2.5)

 break;

 }

 return i;

 }

Scope exercise 2

•  The following code doesn t work. Fix it.

 public static void test2() {

 int i= 4;

 if (i*i > 6) {

 int i6= i;

 }

 int i7= i6 + 2;

 }

2/3/12

8

Scope exercise 3
/// What s wrong? Fix it. Find a general strategy to help.

public class ScopeTest {

 public static void main(String[] args) {

 test3();

 }

 public static void test3() {

 int i1;

 for (i1 = 0; i1 < 10; i1++)

 System.out.println("d: "+getDensity(i1));

 int i2;

 for (i2 = 0; i2 < 10; i2++)

 System.out.println("c: "+getCube(i1));

 }

 public static int getDensity(int i) {

 return i;

 }

 public static int getCube(int i) {

 return i * i;

 }

}

MIT OpenCourseWare
http://ocw.mit.edu

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

