1.00/1.001 Introduction to Computers and Engineering Problem Solving

Recitation 4 Static Array & ArrayList

Spring 2012

Quiz 1

- March 9 (Friday)
- 3:05pm-4:25pm
- Review session:
 - Wed. March 7, 7pm 9pm
- LA office hour: Thu 7:00-9:00pm
- Open notes/book, no electronic devices

Today's Recitation

• Keywords: Static

• Array and ArrayList

Static

- Static members:
 - not associated with any particular instance of the class one copy shared by all instances
 - accessible to both static and non-static methods
- Static Methods:
 - may only access static members, **not** instance members
 - should be called using Classname.methodName()

Static Members

<pre>public class Number {</pre>
<pre>private int num;</pre>
}

Static Members

Static Methods

```
public class Number {
   private static int num;
   private int num2;
   public int sum() {
       return num + num2;
}
```


When to Use Static Methods

- When no access to any instance field is required. Usually one of two scenarios:
 - The method takes in all the information it needs as arguments:

Math.pow(double base, double exp)

- Or, the method needs access to only static variables.
- Usually you can think of these methods as taking in some information and performing a service for you
- Typically, they do not alter the state of the class, as they do not have access to instance variables

Exercise 1: Static Members

- Write a class Ticket that
 - Keeps track of how many tickets there are
 - Assigns a unique ticket number to each ticket, starting with 100, 101, etc.
 - Has a method to return the number of tickets
 - Has a method to return the ticket number
- Write a class TicketTest that creates some Ticket objects and then prints out how many were created.

Keywords Summary

public / private

Control access to data members and methods. **Public** data members can be accessed outside the class, and **public** methods can be invoked outside the class. **Private** data members and methods are not visible outside the class

static

Each instance (object) of a class has its own copy of each non-static data member, but there is only one copy of each **static** data members, shared by all instances (objects) of the class.

A **static** method can only use the **static** data members of the class and its input parameters. **Static** methods are invoked on the class name, not on any object name.

void

Apart from constructors, every method has a declared return type. If a method does not return anything, its return type must be **void**.

final

The value of a **final** data member cannot be modified after it has been initialized.

Keywords Summary

public class UGrad{

What is the function of each keyword in this class?

```
private double qpa;
public static final int MAX GPA = 5;
public double getGPA() {
    return gpa;
}
public void printGPA() {
    System.out.println("GPA: " + gpa + " / " + MAX GPA);
}
public static int getMaxGpa() {
    return MAX GPA;
}
```

Array vs. ArrayList

- Size fixed at creation
- Accessed with z []
- Object with no methods
- One public data member: z.length
- Slightly faster

- Size varies as data is added/removed
- Accessed with z.get()
- Object with no data members
- Has lots of methods:
 e.g., z.add(),
 z.size()
- More flexible

Array and ArrayList

• Setting and accessing data is different:

What does array contain?

```
ArrayList<Integer> arrayList = new ArrayList<Integer>();
for(int i = array.length-1; i > -1 ; i--) {
    arrayList.add(array[i]);
}
```

What does arrayList contain?

Array or ArrayList?

- Which would you use for the following problems: an Array or ArrayList?
 - Write a method that returns all the primes between 2 and a specified number
 - Write a method that returns a specified number of random numbers

ArrayList Exercise

- Write a method findPrimes(int n) that returns an ArrayList<Integer> of all the primes between 2 and n
- Start by putting in all the numbers, then remove the ones that are multiples of each other in the ArrayList
- Some code is provided

ArrayList Exercise

```
public static ArrayList<Integer> findPrimes(int n) {
    //Declare the ArrayList
    for (int i=2; i<=n; i++)</pre>
        //Put i in the ArrayList
    int i = 0;
    while //condition to make sure i is a valid index
        int j = i + 1;
        while //condition to make sure j is a valid index
            if //(element j)%(element i)==0
                 //remove the proper number from the list
            else
                i++;
        }
        i++;
    }
    //return your ArrayList
}
```

Array Exercise

- Write a method makeRandom(int n) that returns an array of n random numbers
- Some code is provided

Array Exercise

private static Random r = new Random();
public static int[] makeRandom(int n) {
 //Create your array, then assign random
 //numbers using r.nextInt();

}

Self assessment, lectures 1-11

Skill	Below	Expected	Above
Data types	Types misused. Static not used	Ints and reals used distinguishably. Static used correctly	Int, long, double, boolean, and static used purposefully
Variables	Numbers and variables used without distinction	Variables used for most quantities	Variables easy to read. Naming is consistent and accurate
Expressions	Complex expressions not defined correctly; simple expressions ok	Complex expressions organized by parentheses and use of variables	Complex expressions structured for increased clarify
Loop constructs	Successfully used	Clear and understandable	Appropriate choice of for, while, do- while

Self assessment, lectures 1-11

Skill	Below	Expected	Above
Methods	Methods not clearly defined, or use poor arguments or return values. Wrong use of static	Methods defined but overall structure not always clear. Static used correctly.	Methods organized, named clearly, perform clear behaviors. Static used appropriately
Method arguments	Few or no arguments used	Appropriate arguments used	Arguments versus data members clearly designed
Variable scope	Local variable scope inconsistent, often too large	Most variables have appropriate scope	All variables defined just before use and go out of scope after use

Self assessment, lectures 1-11

Skill	Below	Expected	Above
Comments	Some critical comments missing, some not clear	Comments explain basic code	Comments make code self- explanatory
Indentation	No indentation used	Some indentation used but not consistent	All code properly indented

Homework 4: Scrabble

What are all the two and three letter words that can be made with your hand of 7 letters?

	Dictionary				
	twoLetterWords =				
		"AA"	"AB"	"AD"	
	1				
	threeLetterWords =				
	0	"AAH"	"AAL"	"AAS"	
	1	"BAA"	"BAD"	"BAG"	
	2	"CAB"	"CAD"	"CAM"	
7	3	"DAB"	"DAD"	"DAG"	
	4	"EAR"	"EAT"	"EAU"	

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.