
1.00/1.001/1.002
Introduction to Computers and Engineering Problem

Solving

Recitation 7
Swing

Frame Customization

Events
April 2nd, 3rd 2012

1

Creating a Frame: Exercise

public static void main(String[] args)

{

 JFrame fr = new JFrame("Empty Frame");

 fr.setSize(200,100);

 fr.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 fr.setVisible(true);

}

In a main() method create and display a
200x100 frame, that resembles the following
frame.

There are often multiple ways of doing the same thing with Swing. For example:

JFrame fr = new JFrame(”Empty Frame");

JFrame fr = new JFrame();

fr.setTitle(”Empty Frame");

equivalent
2

© Oracle. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

Frame Customization

CustomFrame is a custom JFrame class
• CustomFrame extends JFrame
• Sets the title to “Custom Frame”
• Sets the size to 200 X 200
• Sets the background to blue

public class CustomFrame extends JFrame

{

 public CustomFrame(){

 super(”Custom Frame");

 // custom size and background color

 setSize(200,200);

 setBackground(Color.BLUE)

 // other customization statements

 }

}

3

public class CustomFrame extends JFrame

{

 public CustomFrame(){

 super(”Custom Frame");

 // custom size and background color

 setSize(200,200);

 setBackground(Color.BLUE)

 // other customization statements

 }

 public static void main(String[] args)

 {

 //example using custom Frame

 JFrame fr = new CustomFrame();

 fr.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 fr.setVisible(true);

 }

}

We won't customize JFrame objects in the main() method. Customization
statements are placed in the constructor of a class that extends JFrame. The
main() method only creates an instance of the custom frame class, makes it visible
and sets the default close operation.

Frame Customization (cont’d)

4

Swing Components

Container (ContentPane)
Contains a JTextField and a
JPanel, organized in FlowLayout.

Container cp = frame.getContentPane();

cp.setLayout(new FlowLayout());

JFrame
Has a ContentPane

JFrame frame = new JFrame(”Frame Title");

JPanel
Contains 5 JButtons
organized in BorderLayout

JTextField

cp.add(new JTextField(5));

JPanel panel = new JPanel();

panel.setLayout(new BorderLayout());

// add buttons to the panel

cp.add(panel);
5

© Oracle. All rights reserved. This content is excluded
from our Creative Commons license. For more
information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

GridLayout Example

// constructor only for custom JFrame

public CustomFrame(){

 super("Frame Title");

 Container cp = getContentPane();

 cp.setLayout(new GridLayout(3, 2)); //override default BorderLayout

 cp.add(new JButton(“1"));

 cp.add(new JButton(“2"));

 cp.add(new JButton(“3"));

 cp.add(new JButton(“4"));

 cp.add(new JButton(“5"));

 cp.add(new JButton(“6"));

 pack();

}

The following code creates a custom frame with a
content pane resembling the following image.

The pack() method sizes the frame so that all its
contents are at or above their preferred sizes.
This method must be called AFTER all components
are added to the frame or panel.

Also, call the revalidate() method if you get
strange bugs in your layout. It causes the Container
to resize the components and may resolve the bug

6

© Oracle. All rights reserved. This content is excluded from
our Creative Commons license. For more information, see
http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

Exercise
Create a frame resembling the following:

7

© Oracle. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

Swing Event Model

Event sources

Event listeners

Source-listener relationships

Events are triggered by JComponents.
Example: a JButton triggers an ActionEvent when the user clicks it

An object implementing a listener interface can listen to events.
Each listener interface has (a) method(s) that react to events.
Example: an object implementing the ActionListener interface has an
 ActionPerformed method that reacts to ActionEvents triggered by
JButtons.

Event listeners are registered at event sources
Example: aJButton.addActionListener(aListenerObject)

Top-level containers JFrame, JDialog, JApplet

Containers Container JPanel

Components JComponent JLabel

 JButton

 JTextField

8

Swing Event Model

Example:

A frame holding a JPanel with a button that prints "Swing" to the console when clicked.

3 Types of Source-Listener relationships:

- The listener is the container.

- The listener is an object of an inner class of the class containing the source.

- The listener is an anonymous inner class of the class containing the source.

Source?

Listener?
The JButton "Click to print"
An object that has an ActionPerformed method printing "Swing".

9

© Oracle. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

Option 1: Container Listens

public class PrinterPanel extends JPanel {

 JButton b;

 public PrinterPanel(){

 b = new JButton("Click to Print");

 add(b);

 }

}

Complete the PrinterPanel class by implementing a listener for the JButton and
print "Swing" when the JButton is clicked

10

© Oracle. All rights reserved. This
content is excluded from our Creative
Commons license. For more information,
see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

Option 2: Inner Listener Class

public class PrinterPanel extends JPanel{

 JButton b;

 public PrinterPanel(){

 b = new JButton("Click to Print")

 add(b);

 }

 public class Printer {

 }

}

Complete the inner class Printer so that it can listen to JButtons and print "Swing"
when a JButton is clicked. Then add, to the PrinterPanel class, a Printer object that
listens to the existing JButton.

11

© Oracle. All rights reserved. This content
is excluded from our Creative Commons
license. For more information, see
http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

Option 3: Anonymous Inner Class

public class PrinterPanel extends JPanel{

 JButton b;

 public PrinterPanel(){

 b = new JButton("Click to Print")

 add(b);

 }

}

Add an anonymous inner class to the JButton to print "Swing" when the JButton is
clicked.

12

© Oracle. All rights reserved. This content
is excluded from our Creative Commons
license. For more information, see
http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

Exercise
We will model a combination lock using Swing.

Open/Close button (JButton)

 - green when lock is opened, red when it is closed

 - when clicked: - if the lock is opened, close it.

 - if the lock is closed, open it if digits match combination

Digit Text field (JTextField)

 - Take input digits for lock combination

Change Combination button (JButton)

 - when clicked: - if lock is opened, set the combination to the current
 digits.

Lock opened Lock closed
13

© Oracle. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

Class Structure

Create a class LockPanel that extends JPanel. Import all necessary packages.
Start by adding a main() method to create an instance of the LockPanel, insert it
into a JFrame and display it to the user.
- We will implement the LockPanel constructor later.

14

Data Members
Add the appropriate data members to the LockPanel class.
- Which data members do you need to model the lock and build the GUI?

15

JComponents
Write the constructor of the LockPanel class. Within the
constructor, create and add the appropriate JComponents
and input arguments. Initialize the lock to be open.
- JButton has a setBackground(Color) method.

16

© Oracle. All rights reserved. This content is excluded
from our Creative Commons license. For more
information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

Event Listeners

In the constructor, attach an anonymous inner class to the 'change combination'
button. The combination can only be changed when the lock is opened.
- Class JTextField has a String getText()method
- Convert a string into an integer using Integer.parseInt(String)

17

Event Listeners
Attach an anonymous inner class the the 'open/close' button.
The lock can always be closed, but it can be opened only if the
digits match the combination.

- JButton has a setBackground(Color) method.
Lock opened

Lock closed

18

© Oracle. All rights reserved. This content is excluded
from our Creative Commons license. For more
information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

Homework 6
Model

• Write the Antenna class(es), which model the antenna using Inheritance
and the equations from homework 1

Controller
• Do not need to draw Antennae
• All the textboxes, combo boxes, and buttons should be displayed and

functional

19

MIT OpenCourseWare
http://ocw.mit.edu

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

