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Application Example 5 

(Bernoulli Trial Sequence and Dependence in Binary Time Series) 


IS THE SERIES OF RAINY/NON-RAINY DAYS A BERNOULLI 
TRIAL SEQUENCE? 

Note: The shaded text in this note involves the concept of correlation function for a random 

sequence. This concept will be encountered later in the course. In a fist reading, you may skip 

that text. 

The concept of dependent random variables finds an important application in so-called time 

series, which are models of how a random quantity varies in time.  In the case when time is 

discrete or discretized, as for example happens when one considers variables with daily, monthly 

or annual values (daily close of the stock market, monthly average temperatures, annual sales, 

score of ith baseball game, etc.), the time series is simply a discrete sequence of random variables 

Xi. An important issue in modeling such sequences is the probabilistic dependence among 

different variables. 

Here we illustrate the concepts of dependence in time series by considering the simplest case, 

which is a series of indicator variables {Ii, i = 0, ± 1, ±2, ...}. Such variables can be used to 

indicate whether or not an event of interest occurs (Ii = 1) or does not occur (Ii = 0) at “time” i. 

For example, we can take the event of interest to be the fact that day i is rainy. Again to keep the 

illustration simple, we consider the case when the sequence of rainy/non-rainy days is stationary. 

Stationarity means that the sequence has everywhere the same statistical properties. Hence, the 

probability P[Ii = 1] does not depend on i, the probability P[(Ii = 1)∩ (Ij = 1)] depends only on the 

separating distance |i - j|, and so on. The assumption of stationarity is realistic in many cases and 

greatly simplifies the characterization of a time series.  

An implication of stationarity for a random sequence {Ii, i = 0, ± 1, ±2, ...} is that the correlation 

function ρij depends only on the time lag |i-j|. 



The joint distribution of the daily rain/no-rain indicators Ii and Ij has 4 probability masses: 

• a probability mass p00 at (0,0), which gives the probability that both days are dry, 

• a probability mass p11 at (1,1), which gives the probability that both days are wet, 

• probability masses p01 and p10 at (0,1) and (1,0), which give the probability that day i is dry 

and day j is wet and, viceversa, that day i is wet and day j is dry. 

These four probabilities must add to unity.  Moreover, due to stationarity, p01 = p10, meaning that 

the relative frequency of the two “transitions” (dry → wet and wet → dry) must be the same. 

This means that the joint distribution of Ii and Ij is completely specified by just two probabilities, 

which we take to be p00 and p11. The other probabilities must be p01 = p10 = (1 - p00 - p11)/2. 

Since p00 and p11 determine the joint distribution of Ii and Ij, they also determine the marginal 

distribution of Ii (which, due to stationarity, does not depend on i) and the conditional 

distributions of (Ii|Ij) and (Ij|Ii) (which, due to stationarity, are the same and depend only on the 

time lag |i - j|).  In fact, 

P[Ii = 0] = p0 = p00 + p01 P[Ii = 1] = p1 = 1 - p0 = p11 + p01

 P[Ii = 0| Ij = 0] = p00/( p00 + p01) P[Ii = 1| Ij = 0] = 1 - P[Ii = 0| Ij = 0] (1) 

P[Ii = 0| Ij = 1] = p01/( p11 + p01) P[Ii = 1| Ij = 1] = 1 - P[Ii = 0| Ij = 1] 

Notice the following: 

• The marginal probabilities p0 and p1 = 1 - p0 describe the overall dryness/wetness of the region. 

In fact, these probabilities give the long-term fraction of days when it rains or does not rain. 

However, they say nothing about the pattern of rain.  For example, for a given fraction p1 of 

rainy days, such days might in some regions come as long runs of uninterrupted rain followed 

by long dry spells, whereas in other regions dry and wet day may be much more “mixed”. The 

following are examples of rain/no-rain patterns with the same values of p0 and p1 but very 

different “clustering characteristics”: 
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 50-day record from Climate 1: 


00000000011111110000000000000000000111000000000000 


(2)  

50-day record from Climate 2: 


00010001100000000100100000010000000110001001000000 


In both cases, there are 10 rainy days out of 50 and reasonable estimates of p0 and p1 are p0 = 

40/50 = 0.8 and and p1 = 10/50 = 0.2. 

• To understand how the differences in the patterns of Eq. 2 are reflected in our indicator model, 

consider the joint distribution of rain/no-rain in two consecutive days, i and j = i + 1.  We 

estimate the probabilities p00 and p11 of the joint distribution as the relative frequencies in the 

samples of pairs of consecutive dry (00) and consecutive wet (11) days, respectively.  This 

gives: 

for Climate 1: p00 = 37/49 = 0.7551, p11 = 8/49 = 0.1633 


p01 = p10 = (1 - p00 - p11)/2 = 0.0408 


(3)  

for Climate 2: p00 = 31/49 = 0.6327, p11 = 2/49 = 0.0407 


p01 = p10 = (1 - p00 - p11)/2 = 0.1633 


Notice that the marginal probabilities p0 and p1, obtained using Eq. 1, are the same in the two 

cases. What is different is that these probabilities are contributed in different amounts by the 

“diagonal terms” p00 and p11 and the “off-diagonal terms” p01 and p10: in Climate 1, the off-

diagonal terms are nearly zero, meaning that the probability of the weather changing from one 

day to the next is very small (this is consistent with the observed long spells of wet and dry 

periods), whereas in Climate 2 the probability of a weather change is much higher. 

Limiting cases with respect to weather variability are joint distributions of the following types: 
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- extreme permanence of weather conditions: p11 = 1 - p00 and p01 = p10 = 0. In this case, 

extremely long dry periods alternate with extremely long wet periods.  The ratio between 

the average lengths of dry and wet periods equals p00/p11. 

- extreme variability of weather conditions: either p11 or p00 or both are zero and p01 = p10 ≠ 0. 

For example, suppose that p11 = p00 = 0 and p01 = p10 = 0.5. This means that weather 

alternates in a perfectly predictable manner between rainy and non-rainy days, as 

01010101... 

In both cases, the weather can be deterministically predicted from one day to the next. In fact, the 

conditional distribution of (Ii+1|Ii) has in both cases a unit mass at 0 or at 1.  This is consistent 

with the intuitive notion that, in the first case, the weather tomorrow is with probability 1 the 

same as the weather today and, in the second case, the weather tomorrow is with probability one 

opposite to the weather today. An intermediate case between these two extremes is when the 

weather in different days is independent. The condition of independence is that 

pij = pi pj, for all i,j = 0,1 (4) 

In this case of independence, it is easy to verify that the conditional distributions are identical to 

the marginal distribution.  In a sense, this is the case of maximum prediction uncertainty, because 

information from weather in the past is useless to predict future weather conditions. 

The previous examples illustrate the limitation of providing only the marginal distribution of 

variables that form dependent time series - or for that matter any set of dependent variables - and 

the additional information provided by the joint distributions.  Now we turn to the calculation of 

first and second-moment properties, i.e. mean values, variances, and covariance and correlation 

functions. 

The mean value and variance of Ii can be calculated from the marginal distribution and are: 

m = (0)P[Ii = 1] + (1)P[Ii = 1] = P[Ii = 1] = p1 
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σ2 = E[Ii
2] - m2 = p1 - p1

2 (5)  

The covariance may be found using the relation Cov[Ii,Ij] = E[IiIj] - E[Ii] E[Ij]. This gives 

Cov[Ii,Ij] = p11 - p1 
2 (6)  

Therefore, the correlation function is given by 

ρij = (p11 - p1 
2)/( p1 - p1 

2)  (7)  

This correlation is zero for p11 = p1
2, which for the indicator variables Ij and Ij is also a condition 

of independence (see Eq. 4). 

A first key issue when modeling an indicator time series {Ii} is whether the series satisfies the 

conditions of stationarity and independence, i.e. whether it may be regarded as a Bernoulli Trial 

Sequences (BTS). To illustrate, we consider a series of 84 daily rain/no-rain indicators collected 

at a station in Illinois during the summer season. The recorded series is 

100001011100000000011011111100000111000000000100010111100000011111 

100000000001010000 

The marginal probabilities of rainy and non-rainy conditions are estimated to be p1 = P[Ii =1] = 

30/84 = 0.36 and p0 = P[Ii = 0] = 54/84 = 0.64. 

In order to determine whether the sequence is independent or not, we estimate the probabilities 

p00 and p11 for different time lags |i-j|, the correlation function ρ|i-j| = (p11-p1
2)/(p1-p1

2), and the 

one-day-lag conditional probabilities 

p0|0 = P[Ii+1 = 0|Ii = 0]. p1|0 = P[Ii+1 = 1|Ii = 0] 

p0|1 = P[Ii+1 = 0|Ii = 1]. p11 = P[Ii+1 = 1|Ii = 1] (8) 
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Results are as follows: 

|i-j| 

1 2 

p00 

p11 

ρij 

p0|0 

p0|1 

0.50 

0.20 

0.40 

0.78 

0.40 

0.48 

0.20 

0.29 

0.75 

0.47 

3 

0.42 

0.14 

0.03 

0.65 

0.62 

Problem 5.1 Based on the above statistics and on direct inspection of the rain/no-rain record, 

discuss whether the BTS assumption is realistic or not. 

From the previous analysis, you have probably concluded that the assumption of independence is 

not tenable. Then the problem is to formulate a suitable model with dependence.  Perhaps the 

simplest random sequences {Ii} with dependence are so-called Markov chains. The Markov 

property is a limited-memory property, which in our case says that the weather in the future 

depends on the weather in the past only through the most recent (the present) weather conditions. 

Therefore, in predicting whether tomorrow it will rain or shine, one needs only consider whether 

it rains or shines today. While such an assumption may not be entirely verified by actual weather 

patterns, it provides a convenient first step towards modeling dependence.   

A way to appreciate the simplicity of Markov models is to set up a weather simulation procedure.  

From the rain/shine record above, you have estimated the marginal probabilities p0 and p1 and the 

one-day conditional probabilities in Eq. 8. This is all one needs to simulate Markov sequences of 

dry/wet weather patterns. Start by simulating the weather state (rain or shine) in day 1 by 

randomly drawing from the marginal distribution.  Then, for day 2, draw a random variable from 

the conditional distribution given the state in day 1.  Continue this operation for successive days. 

Notice that this is analogous to an “urn model” in which there are two urns with different 

proportions of white and black balls. White balls signify shine and black balls signify rain.  The 
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proportions of black and white balls in the two urns correspond to the conditional probabilities of 

rain and shine given that the previous day was sunny (urn 1) or rainy (urn 2).  To generate 

weather sequences, one draws randomly, with replacement, from the urn that corresponds to the 

weather of the preceding day. 

Problem 5.2 Use the above Markov (urn) model and the marginal and conditional probabilities 

extracted from the Illinois sequence to produce a long synthetic weather record.  Compare 

statistics of the record with those of the actual weather sample. 
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