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Application Example 6 
(Exponential and Poisson distributions) 

ARE THE SEQUENCES OF BUS AND EARTHQUAKE 


ARRIVALS POISSON? 


The Poisson Process 

The Poisson process is the simplest random distribution of points on a line. What 

makes this model simple and convenient to use is the fact that, in a Poisson process, the 

number and locations of events in non-overlapping (separate) intervals are independent. 

This condition is often referred to as “lack of memory” of the process, since it implies 

that the pattern of past events has no relevance to the pattern of future events. 

For some applications, the use of the Poisson point process can be justified on 

theoretical grounds, but in most cases one must verify the plausibility of the Poisson 

assumption by comparing implications of that assumption with actual data. Two 

verifications are frequently made: 

1.	 If the point process is Poisson, the distribution of the interarrival time, T, is 

exponential with mean value 1/λ where λ is the rate parameter of the process; 

2.	 If the point process is Poisson, the number of events in an interval of duration D has 

Poisson distribution with mean value λD. 

Next we illustrate the use of these validation techniques for the process of bus arrivals at 

a station. The data sets used for this example are synthetic, but they are representative of 

patterns one may observe in actual samples. 

1




Three synthetic data sets have been generated, each containing 100 arrival times 

in minutes. The data sets are representative of conditions at three different bus stations: 

Data Set 1 refers to bus arrivals at Point A in Figure 1, which is close to the dispatch 

station. Data Set 2 is representative of conditions at Points B, which is far from the 

dispatch station and Data Set 3 is collected at Point C, in a downtown area. The arrival 

times are given in the attached tables and are displayed graphically in Figures 2 and 3. 

Figure 1: Locations of bus data collection station relative to dispatch point 

7:03 7:07 7:11 7:15 7:20 7:24 7:25 7:28 7:33 7:43 
7:46 7:47 7:49 7:51 7:53 7:58 8:04 8:10 8:16 8:18 
8:20 8:25 8:28 8:33 8:35 8:37 8:44 8:50 8:58 9:01 
9:09 9:14 9:15 9:18 9:23 9:27 9:29 9:34 9:38 9:40 
9:48 9:51 9:55 10:00 10:06 10:10 10:15 10:17 10:24 10:27 

10:31 10:38 10:43 10:45 10:51 10:54 10:57 10:59 11:01 11:11 
11:14 11:16 11:21 11:28 11:32 11:37 11:45 11:48 11:51 12:01 
12:04 12:13 12:16 12:21 12:26 12:29 12:38 12:45 12:51 12:55 
13:00 13:06 13:15 13:21 13:24 13:26 13:28 13:31 13:35 13:42 
13:47 13:53 13:55 14:02 14:06 14:08 14:11 14:16 14:21 14:28 

Table 1: Arrival times at Station A 
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7:00 7:11 7:15 7:17 7:26 7:29 7:30 7:32 7:34 7:37 
7:39 7:41 7:46 7:54 7:57 8:12 8:15 8:24 8:46 8:46 
8:50 9:00 9:01 9:10 9:20 9:31 9:33 9:41 9:43 9:49 
9:49 10:04 10:04 10:06 10:17 10:17 10:23 10:26 10:31 10:31 

10:38 10:44 10:44 10:51 10:52 10:52 10:58 11:02 11:03 11:06 
11:11 11:13 11:19 11:19 11:29 11:35 11:39 11:40 11:57 11:57 
11:58 11:58 12:04 12:10 12:11 12:16 12:20 12:28 12:28 12:29 
12:30 12:35 12:50 13:04 13:12 13:13 13:16 13:18 13:27 13:31 
13:35 13:36 13:38 13:56 13:56 13:56 14:06 14:11 14:11 14:16 
14:16 14:17 14:19 14:19 14:24 14:25 14:26 14:28 14:31 14:38 

Table 2: Arrival times at Station B 

7:01 7:01 7:01 7:29 7:29 7:42 7:50 7:58 7:58 8:00 
8:00 8:10 8:13 8:41 8:41 8:47 9:15 9:16 9:24 9:31 
9:31 9:31 9:31 9:36 9:36 9:59 10:01 10:01 10:01 10:03 

10:03 10:18 10:18 10:18 10:18 10:21 10:24 10:24 10:25 10:25 
10:25 10:25 10:48 10:51 10:51 10:52 11:51 11:52 11:52 11:52 
11:52 11:52 12:05 12:15 12:24 12:24 12:25 12:32 12:39 12:40 
12:40 12:46 12:47 12:58 13:00 13:00 13:05 13:07 13:07 13:07 
13:07 13:07 13:07 13:33 13:36 13:36 13:36 13:36 13:36 13:36 
13:36 13:36 13:36 13:39 13:39 13:39 13:39 13:39 13:39 13:39 
13:39 13:39 13:43 13:43 14:00 14:14 14:17 14:19 14:19 14:20 

Table 3: Arrival times at Station C 

Point A 

Point B 

Point C 

Figure 2: Pattern of arrival times at Stations A, B, and C 

3




Point A 
Point B 
Point C 

Figure 3: Arrival times of 100 buses 

A cursory look at Figure 2 reveals differences in the three patterns. These differences 

become especially clear if one plots histograms of the interarrival time and compares 

such histograms to exponential probability density functions with the same mean values. 

These comparisons are made in Figures 4, 5 and 6. 
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Data 
Exponential model 

Figure 4: Histogram of the interarrival time at Station A; comparison with the exponential 

distribution 

Data 
Exponential model 

Figure 5: Histogram of the interarrival time at Station B; comparison with the exponential 

distribution 
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Data 
Exponential model 

Figure 6: Histogram of the interarrival time at Station C; comparison with the exponential 

distribution 

Notice that: 

•	 All three samples have mean values close to 5 minutes, which is the theoretical mean 

value used in the simulation. 

•	 At Station A, comparison of the histogram with the exponential distribution shows 

that, relative to a Poisson process, the data includes too many interarrival times close 

to the mean and too few very small or very large values. This is indicative of 

regularity in the process, i.e. the tendency of events to occur at nearly constant time 

lags. The reason why a record of this type may be representative of Station A is that, 

if buses are dispatched at equally spaced times, then their arrivals at stations close to 

the dispatch area tend to be regular. 

•	 At Station B, the histogram has a nearly exponential decay, which is consistent with 

the Poisson assumption. The “randomization” of the times has occurred due to the 
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many random disturbances to the bus speed encountered from the dispatch point to 

Station B. 

•	 At Station C, the histogram departs from the exponential shape in a way opposite to 

Station A. Specifically, relative to a Poisson process, Sample 3 contains too many 

very short and very long interarrival times and too few intermediate interarrival 

times. This pattern is symptomatic of clustering, which is the tendency of points to 

occur in widely separated groups. For buses, such condition may be induced by 

varying traffic congestion along the route or by the tendency under certain traffic 

conditions for vehicles to form platoons behind slowly moving vehicles. 

Similar conclusions are arrived at by looking at the distribution of NT, the number of bus 

arrivals in a period of fixed duration T. This is done in Figures 7, 8, and 9, for T = 15 

min. Under the Poisson assumption, NT has Poisson distribution, with mean value 3. 

Figure 7 displays an excessively high probability of 3 arrivals relative to the Poisson 

probability value. This is consistent with the previous observation that the arrival process 

at Station A is regular. Figure 8 shows good agreement between the empirical histogram 

and the Poisson distribution and Figure 9 displays deviations that are symptomatic of 

clustering (either very few or very many arrivals in T). 
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Data 
Poisson 

Figure 7: number of buses in periods of 15 minutes at Station A 

Data 
Poisson 

Figure 8: number of buses in periods of 15 minutes at Station B 
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Data 
Poisson 

Figure 9: number of buses in periods of 15 minutes at Station C 

Renewal Processes 

The sequences of arrival times analyzed above were generated using a class of 

point processes called renewal processes. These processes are such that the interarrival 

times are independent and identically distributed. The Poisson process is a particular type 

of renewal process, with an exponential interarrival time distribution.  

Specifically, the simulations of bus arrivals we made using a gamma distribution 

of the interarrival time, with shape parameter n = 5, 1, and 0.25 for Data set 1, 2, and 3, 

respectively. For n = 1, the gamma distribution is the same as the exponential 

distribution. Therefore, Data set 2 is indeed a sample from a Poisson process. Renewal 

processes are among the simplest processes through which one can represent regularity or 

clustering. 

In nature, clustering is observed very frequently, because in many cases the 

occurrence of an event facilitates the occurrence of other events. An example is given by 

earthquake sequences, which display clustering due to foreshocks and aftershocks, 

swarms, etc.  
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Regularity is also observed, often as a result of competition or of a regulatory 

mechanism. For example, the times when airplanes take off or land at an airport tend to 

be regular, due to the minimum spacing imposed for safety by the traffic controllers. 

Similarly, the times at which customers leave a store tends to be regular if the service 

time does not vary much from customer to customer and the store has few counters. 

In some cases, both clustering and regularity are observed in a point process, at 

different “scales”. For example, it has been suggested and in some cases observed that 

earthquakes occur in clusters, as mentioned above, but the clusters themselves tend to be 

regularly spaced. Regularity of the clusters (more precisely, of the clusters that contain 

large magnitude earthquakes) is explained by the fact that large earthquakes “discharge” 

much of the elastic energy accumulated in the earth crust in the vicinity of the causative 

fault and it takes time for such energy to build up and reach again the critical level. 

While any departure from the Poisson assumptions requires more complicated 

models to represent the phenomenon of interest, it is precisely the non-Poisson character 

of a point process that makes it possible to make predictions based on past observations. 

For example, if buses arrive rather regularly, say according to data set 1 and upon 

arriving at the station you are told that a bus just left, then you may “go for a cup of 

coffee” since it is very unlikely that another bus will be coming in the next few minutes. 

On the other hand, if the process is of the clustered type, then you should take the same 

information as an indication that another bus is likely to arrive soon. In the Poisson case, 

which is the dividing case between clustered and regular processes, you should be 

indifferent to the time since the last bus left.  

Whether the sequence of major earthquakes from a given seismic source is 

Poisson, clustered, or regular is a hotly debated issue, with implications on the level of 

earthquake safety. For example, New England experienced the last strong earthquake in 

1755. Based on the strain energy recharge theory and its regularity implications, some 

seismologists believe that we are now “due” for another similar earthquake, while other 

seismologists believe in the Poisson model and say that the fact that 250 years have 

passed without a major event is irrelevant to the future occurrence of large earthquakes in 

this area. 
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Problem 6.1 

The table below gives the historical sequence of earthquake events in a region 

around the Messina Strait, which divides the island of Sicily from mainland Italy. The 

longest suspension bridge in the world is being planned to cross the Messina Strait. The 

region is highly seismic; hence a major concern is the threat posed by earthquakes to the 

bridge. In 1908, a disastrous earthquake struck the region, causing widespread damage 

and thousands of fatalities. The earthquake list provided in the table is limited to 

earthquakes of magnitude 4.5 or above, during the period 1700-1980. ”Dependent” 

events, such as foreshocks and aftershocks, have been removed. Although this operation 

tends to make the resulting earthquake sequence “more Poissonian”, certain 

dependences among the events usually remain. 

(a) Make an analysis of the interarrival times similar to that of bus arrivals in 

Fig. 4, 

(i) for all events irrespective of magnitude and 

(ii) only for events with magnitude greater than 5. 

Comment on the results. 

(b) Evaluate the probability that at least one event of magnitude larger than 5 

occurs in the region during the 50 years from 1980 to 2030. Justify your 

estimate. 
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Year* magnitude** Year magnitude 

1702.13 4.5 1869.91 4.9 
1707.17 4.5 1870.76 6.4 
1712.54 4.5 1873.69 4.5 
1716.14 4.5 1876.70 4.5 
1717.30 5.6 1877.38 4.5 
1720.69 4.5 1877.39 4.5 
1720.70 4.9 1883.30 4.9 
1729.49 4.5 1886.10 4.5 
1736.62 4.9 1886.18 4.9 
1739.36 5.6 1886.26 4.5 
1743.18 4.5 1887.92 5.3 
1743.93 4.9 1889.41 4.5 
1767.53 5.6 1894.14 4.9 
1770.00 4.5 1894.88 5.1 
1783.09 6.9 1902.30 4.5 
1783.10 4.5 1905.69 7.0 
1786.18 5.6 1907.81 5.9 
1789.10 4.5 1908.94 4.5 
1791.78 5.6 1908.99 7.1 
1792.36 4.5 1913.49 5.6 
1805.52 4.9 1917.45 5.3 
1806.27 4.7 1932.39 4.9 
1821.58 4.9 1940.32 4.5 
1823.17 6.0 1947.57 6.0 
1824.94 4.9 1950.27 4.5 
1828.19 4.9 1967.68 4.5 
1831.08 4.9 1973.28 4.7 
1832.18 6.8 1975.04 4.7 
1835.78 5.6 1975.61 4.6 
1836.31 6.0 1976.26 4.8 
1836.34 4.5 1977.97 4.7 
1852.06 4.5 1978.19 4.9 
1852.07 4.5 1978.29 5.5 
1854.11 5.6 1980.94 4.6 

* time of occurrence is given here in fractional year 
**magnitude has not been recorded directly (other than for a few recent events). The values reported here 

have been estimated from Modified Mercalli Intensity, which is a discrete scale. This is why the 
magnitudes tend to have discrete values. 

Table 4: Historical catalog of “main events” (dependent events excluded) for a region surrounding the 
Messina Straights in Southern Italy. The catalog includes events of magnitude at least 4.5 for 
the period 1700-1980. 
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