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Application Example 9 

(Joint, marginal and conditional distributions) 


RELATION BETWEEN STORM DURATION AND 

PRECIPITATION INTENSITY


Hydrologists are much interested in the statistical characteristics of precipitation events. 

Such characteristics are for example used to assess the variability of river flow, evaluate 

the risk of floods, and design river regulation structures. The two most important storm 

characteristics are duration T and average precipitation intensity Y. The product TY 

gives the total precipitation volume V during the storm. 

The random variables T and Y are probabilistically dependent. For example, the 

intensity Y is much more variable for short than for long-lasting storms. Whether a storm 

with characteristics (T, Y) is critical for a given river basin depends on the characteristics 

of the basin: large basins have a slow response and are mainly affected by long-lasting 

precipitation events, even though the intensity may have relatively low. By contrast, 

small basins have rapid response and for them, intense short storms produce the highest 

floods. 

Simple models of precipitation in time use the joint distribution of T and Y to 

probabilistically describe the generic rainfall event as a “rectangular pulse” of random 

duration T and random intensity Y. The simplest models also assume that storms occur at 

Poisson times and ignore seasonality effects by assuming that (a) the rate λ of arrival of 

storms is constant throughout the year, and (b) the random vectors (T,Y)i that describe 

the characteristics of different storms i are independent and identically distributed. This is 

called the (stationary) Poisson Rectangular Pulse (or PRP) model; see Figure 1. 



Figure 1: idealized rainfall model with “rectangular” rainfall events arriving 

at Poisson times 

A large sample of storm durations and intensities has been collected at a raingage 

station in Bridgeport, Connecticut, where hourly rainfall data are available over a period 

of 11 years. A total of 1727 storms have been extracted from this record, as periods of 

continuous precipitation between hours when no precipitation occurs. A scatterplot of the 

observed (T,Y) values is shown in Figure 2. Notice that, as t increases, the dispersion of 

the conditional variable (Y|T=t) decreases. 

Figure 2: Scatterplot of storm duration T and mean precipitation intensity Y 



In order to represent the rainfall process through a PRP model, we need the storm 

rate λ and the joint distribution of T and Y. The former can be directly estimated from the 

data as the number of observed storms divided by the period of observation. In our case 

this gives λ = 1727/11 = 157 storms/year. 

The problem of estimating the joint distribution of T and Y is more difficult, 

especially because Y and T are dependent. Typically, joint distributions are obtained by 

estimating the marginal distribution of one variable, say T, and the conditional 

distributions of the other variable, here the conditional distribution of (Y|T=t) for each 

given t, and then using the relation 

fT,Y(t,y) = fT(t)fY|T= t(y)      (1)  

The marginal histogram of T from our rainstorm record is shown in Figure 3. It decays in 

a way that cannot be accurately represented by an exponential distribution. However, one 

may use a mixture of two exponential distributions, of the type 
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This exponential mixture fits the empirical histogram very well; see Figure 3. One 

possible interpretation of Eq. 2 is that there are indeed two types of storms: 75% of the 

storms are generally short, with a mean duration of just 2 hours. These could be local 

convective storms. The remaining 25% of the storms have a mean duration of 7 hours 

and might be associated with the passage of frontal systems. 



Figure 3: Empirical distribution of storm duration and fit by the exponential 

distribution mixture in Eq. 2 

Estimation of the conditional distributions of (Y|T=t) for each given t is a more difficult 

task, but one can obtain a reasonable model with a modest amount of effort. The idea we 

exploit is that the distribution of (Y|T=t) might be of the same type for all t and simply 

have one or two parameters, like the mean value mY|t  and the standard deviation σY|t , 

that depend on duration t. Empirical values of mY|t  and σY|t  are shown in Figure 4 for 

each t. Notice that the mean precipitation intensity increases with increasing storm 

duration up to about 16 hours. For longer durations, there is some evidence that the mean 

intensity decreases. On the other hand, the standard deviation decreases monotonically 

with increasing storm duration. This trend of the standard deviation had already been 

observed on the scatterplot in Figure 2. 

Except possibly for the intensity averages when T is large, the empirical values of 

mY|t  and σY|t  are fitted well by the following functions (see Figure 4): 

mY|t = 0.03 + 0.045(1− e−t / 3.5 ) 

σY|t = 0.08e− t /18
    (3)  

where t is in hours and Y is in inches/hour. 



Figure 4: Empirical mean values and standard deviations of (Y|t) for different t and 

fitted analytic functions in Eq. 3 

Finally, we need to specify the type of distribution of (Y|T). Figure 5 shows a 

representative subset of histograms of (Y|T) from the available sample. Visual inspection 

of the histograms in Figure 5 suggests that a lognormal distribution would provide a good 

fit. Recall that a random variable Y has lognormal distribution if its logarithm X = ln(Y) 

is normally distributed. The probability density function of a lognormal variable has the 

form 
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2  are the mean value and variance of ln(Y) and are related to the 

mean value and variance of Y as 
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The relations in Eq. 5 may be used with the mean values and standard deviations of (Y|t) 

in Eq. 3 to obtain the parameters of the distribution of (Y|t) in Eq. 4, for any given t. 

Conditional probability density functions of (Y|T) obtained by this procedure are shown 

in Figure 5, superposed on the empirical histograms. The fit is quite good. 

Finally, the joint density function fT,Y(t,y) is obtained as the product of the 

marginal density of T in Eq. 2 and the conditional density of Y in Eq. 4 (the latter, with 

parameters from Eqs. 3 and 5). 



Figure 5: Selected histograms of the conditional variable (Y|t) and fitted lognormal 

distributions with parameters from Fig. 3 



Problem 9.1 

Using the Poisson Rectangular Pulse model and the joint distribution of T and Y 

described above, calculate numerically: 

(a) the marginal distribution of Y for a generic storm 

(b) the distribution of the total precipitation volume Q = TY for a generic storm; 

(c) the probability that the maximum precipitation intensity in one year, Ymax,, exceeds 1 

inch/hour and the probability that the maximum precipitation volume in one year, 

Qmax,, exceeds 10 inches. 


