1.010 Uncertainty in Engineering Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

1.010 Fall 2008 Homework Set #3 Due October 2, 2008 (in class)

1. The service stations along a highway are located according to a Poisson process with an average of 1 service station in 10 miles. Because of a gas shortage, there is a probability of 0.3 that a service station would have no gasoline available. Assume that the availabilities of gasoline at different service stations are statistically independent.

- (a) What is the probability that there is *at most* 1 service station in the next 15 miles of highway?
- (b) What is the probability that none of the next 3 stations has gasoline for sale?
- (c) A driver on this highway notices that the fuel gauge in his car reads empty; from experience he knows that he can go another 15 miles. What is the probability that he will be stranded on the highway without gasoline?¹
- 2. A random variable *X* has probability density function:

$$f_x(x) = \frac{a}{x}$$
, for $1 \le x \le 2$
= 0, otherwise

where α is a parameter.

- a) Calculate α and plot $f_X(x)$
- b) Find and plot the CDF of X.

¹ An important result for Poisson processes is that, if a Poisson process with rate λ is "thinned" randomly with probability p (meaning that each point of the process is eliminated with probability p independently of the other points), then the remaining points still form a Poisson process with a reduced mean rate of $(1-p)\lambda$. Apply this result to answer question 1(c).

3. A set of earthquake occurrence times (in years since the beginning of recording t = 0) is given below. The mean recurrence rate λ may be estimated as the total number of events divided by the observation period, in this case $\lambda = 50/101.74 \approx 0.5$ events/yr.

Earthquake occurences									
no.	t	no.	t	no.	t	no.	t	no.	t
1	3.61	11	19.01	21	36.87	31	54.57	41	76.83
2	5.22	12	19.44	22	40.53	32	54.70	42	84.62
3	6.74	13	21.81	23	45.66	33	55.32	43	85.90
4	6.83	14	23.44	24	47.98	34	57.30	44	86.03
5	7.23	15	23.71	25	48.30	35	57.63	45	87.85
6	11.04	16	27.84	26	48.75	36	58.88	46	90.41
7	13.20	17	28.41	27	48.81	37	61.96	47	91.10
8	15.90	18	31.01	28	49.22	38	67.86	48	91.34
9	16.14	19	32.23	29	49.27	39	72.35	49	95.66
10	17.21	20	33.30	30	50.28	40	74.17	50	101.74

- a) Construct a histogram of the earthquake interarrival time and compare with the exponential PDF with parameter λ .
- b) Find the empirical distribution of N= number of earthquakes in T=4 years and compare it with the Poisson distribution with λT =4 λ =2
- c) Would you reasonably conclude that the occurrence of earthquakes follows a Poisson point process?