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Instrumented Nano-Indentation: Instrumented nano-indentation is a new technique in
materials science and engineering to determine material strengths at very fine scales. The test
consists in a penetration of a needle-type indenter in a continuous material system (see experi-
mental setup in figure (a) below). The force required to penetrate is then related to the strength
of the material — by means of mechanical modeling.

In this exercise, we propose to develop a simplified triaxial stress—strength model of the nano-
indentation test. To simplify the problem, we consider that the indenter is a rigid cylinder of radius
r0, situated on the surface of a horizontal half-space composed of a homogeneous material, as
sketched in figure (b) below. A vertical force F is exerted on the cylinder in the direction of
the cylinder axis Oz, until it penetrates into the half-space. The value of the force F at this
moment is noted maxF , and the material property that is reported from the test is known as
micro-hardness:

H =
maxF

A
where A is the contact area of the indenter with the material. We suppose that the contact of
the cylinder with the half-space (at z = 0; r ≤ r0) is without friction. Aim of this exercise is to
relate the micro-hardness measurement to the strength properties of the material composing the
half-space.

Throughout this exercise we will assume quasi-static conditions (inertia effects neglected),
and we will neglect body forces.
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Nano-Indentation test: (a) Experimental Setup; (b) Simplified Mechanical Model.
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1.	 Statically Admissible Stress Field: For purpose of analysis, we separate the half-
space Ω in two subdomains, noted respectively Ω1 and Ω2. In these domains, we consider 
the following stress fields: 

- in  Ω1 defined by z > 0 and r < r0: 

σ� � ��

rr = q ; σθθ 
� = q ; σ� = σ (other σij 

� = 0)zz 

- in  Ω2 defined by z > 0 and r > r0: 

σ�	 � 
rr = −q(r0/r)2; σθθ 

� = q(r0/r)
2 (other σij = 0) 

(a)	 Specify precisely ALL conditions which statically admissible stress fields in Ω1 and Ω2 

need to satisfy. 

(b)	 Determine the constants q� , q��, q and σ, so that the stress field σ � is statically admis­
sible in Ω =  Ω1∪ Ω2. 

(c)	 In the Mohr Plane (σ × τ ), give a graphical representation of the stress field σ � for 
2Ω1 and Ω2, by considering that F > qπr
0 . In both Mohr Plane and material plane, 

determine the surface and the corresponding stress vector, where the shear stress is 
maximum in Ω. 

2.	 Mohr-Coulomb Strength Criterion: The material we consider is a Mohr-Coulomb 
material, for which the strength domain is defined by: 

f(σ) =  |τ | + σ tan ϕ− c ≤ 0 
√ 

where |τ | = T2 − σ2, σ = n · σ · n; tan ϕ is the friction coefficient, and c is the cohesion. 
Alternatively, the Mohr-Coulomb criterion can be written in terms of the principal stresses 
σI ≥ σII ≥ σIII  : 

f(σ) =  σI (1 + sin ϕ) − σIII (1 − sin ϕ) − 2c cos ϕ ≤ 0 

(a)	 Display the Mohr-Coulomb criterion in the Mohr Plane (σ × τ); 

(b)	 Determine the relation between micro-hardness H and the strength material properties 
of the Mohr-Coulomb criterion. 

(c)	 In the material plane, represent the orientation of the critical material surfaces, on 
which the Mohr-Coulomb criterion is reached. 

3.	 Refined Approach: By considering that the stress field in Ω2 was constant, determine a 
second relation between the micro-hardness H and the Mohr-Coulomb model parameters. 
Which of the two solutions is closer to the ‘real’ maximum micro-hardness value at failure 
of the Mohr-Coulomb material system. Say why (HINT: Sketch your response in the Mohr-
Plane)? 
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