
1.033/1.57: H#4: “Champagne Method”

(3D-ElastoPlasticity)


Due: Part 1-3 (H#4): December 1, 2003 
Part 4 (Q#3): December 5, 2003 

MIT — 1.033/1.57 
Fall 2003 
Instructor: Franz-Josef ULM 

We consider a rigid infinite half-space with an empty hole of diameter 2a and length L (see 
figure below). In this hole we want to force a deformable cylinder sample of same length L but 
of a greater diameter 2R > 2a than the bore hole. The cylinder is initially stress free, and it is 
entirely forced into the hole. During this processus, the cylinder preserves its length. The contact 
between the cylinder walls and the bore hole walls is frictionless. We want to study the stress 
fields and the required force F to maintain the cylinder in the bore hole. Throughout this exercise 
we assume isothermal and quasi-static evolutions, and body forces are disregarded. 
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1.	Deformation and Strain: We consider a displacement field of the form: 

ξ = u(r)er + D 

with u(r) the displacement in the radial direction er; it is a pure radial displacement field. 
D is a rigid body displacement field which ensures during the process that the axis of the 
cylinder sample coincides with the axis of the bore hole. 

(a)	 Specify the condition which the displacement field needs to satisfy to be kinematically 
admissible. 

(b)	 Once the cylinder sample is in the hole, we want to deal with the problem within the 
hypothesis of small perturbations. For the problem in hand, specify the restriction on 
the considered displacement field. 

(c)	 Determine the linearized strain tensor. 

2.	 Elasticity: We want to determine the stress field in the sample at the end of the processus, 
and the required force to enforce the sample in the hole. In a first approximation, we suppose 
a linear elastic isotropic behavior of the cylinder sample (Lamé constants λ, µ). 

(a)	 Determine the elastic stress field σ in the cylinder sample. 

(b)	 Which equation needs to satisfy the radial displacement u(r) for the elastic stress field 
σ to be statically admissible? By solving this equation, determine function u(r) and 
the linear elastic stress solution. 

(c)	 Determine the force intensity F that is required to enforce the sample in the bore 
hole. Determine the pressure p which the surrounding rigid medium exerts on the 
sample. 

(d)	 Determine the elastic energy that is stored in the cylinder once the sample is in the 
bore hole. 

3.	 Elastic Strength Limit: We want to determine the maximum difference in radius R− a 
between the sample and the bore hole, when the stress reaches the elastic limit. 

(a)	 Plot  the Mohr Circle of  the  elastic solution determined previously.  

(b)	 The sample is assumed to be composed of a Tresca Material, characterized by a 
uniaxial compressive strength f ′ . Determine the admissible radius difference R − a.c

Where and on which surfaces occurs the maximum shear? 

(c)	 What is the maximum admissible radius difference R−a for a Mohr-Coulomb Material, 
defined by the cohesion C and the friction angle ϕ. 

4.	 Plasticity: More realistically, we assume now that the cylinder is composed of an isotropic 
ideal elastoplastic Von-Mises material (shear strength k). We want to determine the re­
quired force F to enforce the sample in the hole for a given radius difference R−a1 > R−a0. 
R− a0 corresponds to the limit radius difference when the sample starts yielding. 
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(a)	 Determine the radius difference R − a0 which corresponds to the elastic limit state of 
the Von-Mises material sample. 

(b)	 We want to determine the elastoplastic stress field σ prevailing in the cylinder once 
the cylinder is in the hole. 

i.	 For the problem at hand, write the constitutive equations required to solve the 
problem. 

ii.	 Show that the consistency condition df = 0 leads to: 

dF 
dp − = 0  

πR2 

where dp is the pressure increment applied from the surrounding medium on the 
sample; and dF the force applied on the cylinder head (see figure ). From the  
previous result, determine the plastic multiplier. 

iii. Determine the stress tensor σ at the end of the elastoplastic loading process. 

(c)	 Illustrate the elastoplastic processus in the Mohr-Stress-Plane. How is the stress vector 
on  the critical shear  plane affected  by  the elastoplastic  processus?  

(d)	 Determine the force intensity F during the elastoplastic process. Compare the result 
with the elastic case (i.e., Question 2c). Comment! 

(e)	 Plot the pressure p exerted by the surrounding rigid half-space versus the radius vari­
ation for this loading processus. 

(f)	 Determine the amount of energy that is dissipated into heat during the processus. 

(g)	 Last, we want to “uncork” the cylinder sample from the rigid half-space by means of 
a “corkscrew” which preserves the length of the cylinder sample during uncorking.. 
Determine the required force F to do so. 
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1 Deformation and Strain 

1.1 (a) K.A. Displacement Field 

The displacement field must satisfy the displacement boundary condition on ∂Ωξd . This  is  
here the prescribed radial displacement: 

r = R : u d = a −R 

This displacement field is such that any point at the cylinder wall, defined by position vector 
X in the undeformed configuration, becomes after deformation x = X + ud 

er +D (i.e., in  
the r−direction, xr = a, Xr = R; therefore ud = xr −Xr. 

1.2 (b) Small Displacement Hypothesis 

|a −R| � R 

The consequence of the small perturbation hypothesis is: 

u(r = R) = u(r = a) 

1.3 (c) Linearized Strain Tensor 

Rigid body motion does not provoke strain; εzz = 0 since same length in bore hole as original 
length. Due to radial symmetry, the shear strains are zero. It follows: 

∂u(r) u(r) ∂uz

εrr =
 ; εθθ = ; εzz = = 0;  other εij = 0  

∂r r ∂z 

2 Elasticity 

2.1 (a) Elastic Stress Field in Cylinder 

σ = 2µε + λ (trε)1; 

Thus, 

∂u(r) u(r)
σrr = (2µ + λ) + λ 

∂r r 
u(r) ∂u(r)

σθθ = (2µ + λ) + λ 
r ∂r 

σzz = λ 
∂u(r)

+ 
u(r) 

� 

∂r r 
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2.2 (b) SA Stress Field 

Equilibrium equation: 

∂σrr 1 
+ (σrr − σθθ) = 0  

∂r r 

Thus, with the stress components previously defined: 

B 
u + u /r − u/r2 = 0→ u(r) = Ar + 

r 

Since u(r = 0) = 0→ B = 0. The displacement boundary condition at r = R gives: 

a −R 
u(r = R) = a −R = AR → A = 

R 

Whence the elastic solution: 
a −R 

σrr = σθθ = 2(µ + λ) 
R 

a −R 
σzz = 2λ = ν(σrr + σθθ)

R 

2.3 (c) Force Intensity 

Application of Reduction Formula delivers: 

a −R 
−F ez = σ · ezda � 2λ πR2 

ez → F = 2πλ [R − a]R 
A=πa2 

�πR2 R 

The pressure p exerted from the surrounding rigid medium is: 

R − a 
on r = R : T(n = e ) = σ · er ≡ −per → p = −σrr = 2(µ + λ)r R 

or equivalently: 
F 

p = 
2νπR2 

2.4 (d) Stored Energy 

Since ξ and σ are solution of the linear elastic problem, Clapeyron’s formula applies: 

1 
W (ε) =  ψ(ε)dΩ =  [Φ(ξ) + Φ∗(σ)] 

Ω 2

Noting 

Φ(ξ) =  T
d · (ξ −D)da = 0  

∂Ω 
Td 

we obtain: 
1 1 1 

W (ε) =  Φ∗(σ) =  T(e ) · (ξd−Dd)da = [−pu(r = R)]da 
2 2 ∂Ω

ξ d 
r 2 ∂Ω

ξ d =2πRL 

= p(R − a)LπR = 2π(µ + λ)(R − a)2L 
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3 Elastic  Strength  Limit  

3.1 (a) Mohr Circle 

Here, σI = σzz ≥ σII  = σIII  = σrr = σθθ. Radius and center of the Mohr Circle are: 

1 R − a 
|τ | = (σI − σIII  ) = µ

2 R 

1 R − a 
σc = (σI + σIII  ) = −(2λ + µ)

2 R 
The Mohr Circle is displayed in figure 1. 

3.2 (b) Tresca Criterion 

Note that σ0 = f ′ . The Tresca criterion for the problem delivers: c 

f ′ cf(σ) = |τ crit| − fc
′/2 = 0→ max(R − a) = R 

2µ 

Maximum shear occurs on a cone of which the surfaces are inclined with regard to ez−direction 
by (see figure 1): 

ϑ(uI = ez, n) = −π/4 

3.3 (c) Mohr-Coulomb Criterion 

f(σ) = 0 : |τ crit|+ σcrit tanϕ − c = 0  

If we note |τ crit| = |τ | cosϕ, σcrit = σc + |τ | sinϕ, we obtain for the problem at hand: 

c cosϕ 
max(R − a) = R 

µ − sinϕ[µ + 2λ] 

Maximum shear occurs on a cone inclined with regard to ez−direction by (see figure 1): 

ϑ(uI = ez, n) = ϕ/2− π/4 

4 Plasticity 

4.1 (a) Von-Mises Criterion 

� 
f(σ) =  J2 − k ≤ 0 
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