
1.033/1.57 Q#2: Elasticity Bounds — Conical

Indentation Test


November 14, 2003 

MIT — 1.033/1.57 
Fall 2003 
Instructor: Franz-Josef ULM 

Instrumented nano-indentation is a new technique in materials science and engineering to 
determine material properties at very fine scales. A typical indentation test is composed of a 
loading and an unloading part. The loading part is used to extract strength properties, the 
unloading portion is used to extract the elasticity properties of the indented material. We have 
already studied the link between strength properties and hardness measurements for a ‘flat’ 
indenter (Homework Set #2) and for a conical indenter (Quiz #1). This exercise deals with the 
link between elastic properties and the indentation result upon unloading. 

An indentation test is a surface test, but its effect is felt in a bulk volume of characteristic 
size L around the indentation cone. Within this bulk zone the material undergoes deformation as 
a consequence of the indentiation, while the material situated outside this zone will ‘not feel’ the 
localized indentation (no deformation). The focus of this exercise is to estimate this characteristic 
size L associated with the elastic unloading by means of the upper bound displacement approach. 
To this end, we consider a rigid conical indenter of half-apex angle α, which —during the loading 
phase— has penetrated into the material to an indentation depth h (see figure 1 TOP). At this 
stage, we consider an infinitesimal unloading |s| << h. The slope of the unloading, dF /ds > 0 
(see figure 1. BOTTOM), is related to the stiffness properties of the indented material by: 

dF 2 √ 
= √ AM (1)

ds π 

where A = πR2 is the projected contact area at the surface z = 0  (see figure), and M is the 
indentation modulus. In this exercise, we will first establish an upper bound for the relation 
between M and the elasticity constants of a homogeneous, linear elastic isotropic material, char­
acterized by the Lamé constants λ, G (= const). Then, we will use this solution to evaluate the 
characteristic length scale L. Throughout this exercise we will assume quasi-static conditions 
(inertia effects neglected), and we will neglect body forces. 
NOTE: PLEASE HAND IN THE FIGURE BELOW WITH THE REQUESTED DRAWINGS TOGETHER 

WITH YOUR SOLUTION. THANKS & GOOD LUCK. 
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1.	Kinematically Admissible Displacement Field: For purpose of analysis, we con­
sider two subdomains of finite size, noted respectively Ω1 = πR

2L and Ω2 = πR
2L (1 + L/R) − 1 

(see figure 1). Both domains are assumed to extend by a length L in both the vertical and

the horizontal direction. The displacement is assumed to be non-zero only within Ω1 and

Ω2. The displacement in the rest of the halfspace, i.e. situated outside Ω = Ω1∪ Ω2, is 

assumed to be zero. In Ω1 and Ω2, we consider vertical displacement fields of the form:


in Ωi : ξ
′ = fi (z, r) ez ; i = 1, 2	 (2)i 

(a)	 For both domains, Ω1 and Ω2, and their common interface, specify the conditions 
which functions fi (z, r) (i = 1, 2) need to satisfy, so that ξ′ is kinematically admis­
sible. HINT: The indenter is a rigid cone, and the test is displacement driven. 

(b)	 We consider a linear form of the displacement in Ω1 and Ω2, that is: 

z − h (1− r/R)
ξ′	 = f1 (z, r) ez = s 1− ez (3)1 L 

r −R 
ξ′	 = f2 (z, r) ez = s (1− z/L) 1− ez (4)2 L 

Sketch this displacement field in Figure 1, and show that it is kinematically admissible 
in Ω = Ω1∪ Ω2. 

(c)	 Determine the non-zero strain components, in Ω1 and Ω2. HINT:  Go  back  to  the  
geometrical interpretation of the linear strain components. By means of very precise 
mechanics argument, show that the displacement field ξ′ is NOT the linear elastic 
solution (ξ, σ) of the problem. 

2.	 Potential Energy: We will employ the upper bound energy method, Epot (ξ) ≤ Epot (ξ′) 
[notation as in lecture notes]: 

(a)	 For the displacement driven indentation test, show that the potential energy of the 
solution of the problem reads Epot (ξ) =  1 dF s2 . Display this result in the force­

2 ds 
displacement curve in Figure 1 (BOTTOM). 

(b)	 Using the displacement field ξ′ i defined by (3) and (4), show that the upper bound of 
the potential energy Epot (ξ′) reads: (	 )2 [ 
Epot (ξ′) = πLR2 s 1 

2 (5λ + 12G) + (λ + 4G) (L/R) + 6G (h/R)2 (5)
L	 12 

(Hint: If you run out of time, just continue working in what follows with the result 
(5). 

(c)	 With the results of 2a. and 2b. develop an upper bound M + for the indentation 
modulus: 

M	≤M + (λ, G, α, R/L) (6) 

(d)	 Finally, the exact solution for the indentation stiffness is M = E/ (1− ν2). From  the  
previous results, determine an upper bound for the characteristic length scale L/R of 
the indentation test, and determine L/R for α = π/4 and ν = 0. 
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Figure 1: TOP: Conical indentation test and domains considered in the exercise. BOTTOM:
Indentation Test Results: Loading and Unloading. In this exercise we are interested only in
the linear elastic unloading part of the problem.
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0.1 Kinematically Admissible Displacement Field 

A kinematically admissible displacement field is a displacement field which satisfies the 
displacment boundary conditions on ∂Ωξd . For a rigid conical indenter, the displacement 
boundary is situated (a) along the indenter-material interface, along which: 

on ∂Ωξd (z = h (1 − r/R); r ∈ [0, R])) : ξd = sez 

and (b) at the boundary of the considered bulk domain, where ξd = 0, in particular:  

on ∂Ωξd (z = L − h (1 − r/R); r ∈ [0, R])) : ξd = 0  

The given displacement field, 

z − h (1 − )r/R
ξ′ = s 1 − ez = f1 (z, r) ez1 L 

r − R 
ξ′ = s (1 − z/L) 1 − ez = f2 (z, r) ez2 L 

satisfies these boundary condition, i.e. 

ξ′ 1 (z = h (1 − r/R); r ∈ [0, R])) = sez 
ξ′ 1 (z = L − h (1 − r/R); r ∈ [0, R])) = 0 

ξ′ 2 (z = L) = 0  

ξ′ 2 (r = R + L) = 0  

Furthermore, the displacement field is continuous at r = R: 

ξ′ 1 (r = R) = 02 (r = R) − ξ′ 

That is, the chosen displacement field ξ′ is kinematically admissible. 
For a displacement field of the form ξ′ = fz (z, r) ez, the non-zero strains are: 

∂fz (z, r)
ε′ = zz ∂z


1 ∂fz (z, r) 1

εzr =
 = θ (ez, er) [half  − distortion] 

2 ∂r 2 

Thus the strains and the strain invariants read: 

• In domain Ω1: 

s 1 ∂ z h h r sh 
ε′ = − ; ε′ = s 1 − + − = −zz L zr 2 ∂r L L L R 2LR 

⎛ ⎞ ⎛ ⎞ ( )2 
( ( ( )2 

s s h 
)2 

s )2 1 h ⎠ ⎠trε′ = − ; tr  (ε′ · ε′) =  ⎝1 + 2  = ⎝1 +  
L L 2R L 2 R 
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• In domain Ω2: 

∂ z r − R s r − R 
ε′ = s 1− 1− = − 1−zz ∂z L L L L 

1 ∂ z r R s z 
ε′ = s 1− 1− + = − 1−zr 2 ∂z L L L 2L L 

s ( 
r − R ) ( )2 ( ( )2s r − R )2 1 z 

] 

trε′ = − 1− ; tr (ε′ · ε′) =  1− + 1− 
L L L L 2 L 

Note that ε′ is continuous over the surface r = R, while  ε′ is not. The associated stress, zz zr 

σ′ = 2Gε′ is not continuous over r = R, as it would be required if ξ′ was the solution of zr zr 

the elasticity problem (i.e. T (n = er) +T (n = −er) = 0⇐⇒ [[σzr]] = 0). This shows that 
ξ′ is not the solution of the problem, but just an approximation, appropriate to be used in 
an upper bound solution procedure. 

0.2 Potential Energy 

We first need to evaluate the potential energy of the solution, which is conveniently evaluated 
from Clapeyron’s formula: 

1 −Ecom (σ) = Epot (ξ) =  [Φ∗ (σ)− Φ(ξ)]
2

In this displacement driven test, Φ(ξ) = 0; and the only contribution to the solution potential 
energy results from the displacement boundary condition: 

1 1 −Ecom (σ) = Epot (ξ) =  Φ∗ (σ) =  ξd · T (n) da =
1 
Fs  

2 2 ∂Ω
ξ d 2 

Next, we will address the potential energy associated with ξ′: 

Epot (ξ) ≤ Epot (ξ′) =W (ξ′)− Φ(ξ′) 

In the same way as for the solution, Φ(ξ′) = 0 in this displacement driven test so that the 
potential energy can be entirely evaluated from the internal free energy in Ω1 and Ω2: 

Epot (ξ′) = WΩ1 (ξ
′ ξ′ 1) +WΩ2 ( 2) 

Thus, 

• In domain Ω1: ⎡ ⎛ ⎞⎤ [ ] ( )2 
( )2

λ 1 h ⎣ ⎠⎦ξ′WΩ1 ( 1) =  (trε′)
2 
+Gtr (ε′ · ε′) dΩ = Ω1 

s λ 
+G ⎝1 +  

Ω1 2 L 2 2 R 

where Ω1 is 

Ω1 = 2π 
∫ L+h(1−r/R) 

dz 
∫ 

rdr = πLR2 

h(1−r/R) 

5 
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• In domain Ω2: 

( )2 ∫ ( ( ( )2s λ r −R )2 ( 
r −R )2 1 z 

WΩ2 (ξ
′ 
2) =  1− +G 1− + 1− dΩ 

L Ω2 2 L L 2 L ( ( )2( )2 ∫ z=L ∫ r=R+L λs r −R )2 G z 
] 

= 2π +G 1− + 1− rdrdz 
L z=0 r=R 2 L 2 L ( )2 ( ) 
s λ L G 1 1 

L2= 2π +G L (4R + L) +  L + LR 
L 2 12 2 3 2 ( )2 ( ) ( ) 
s λ 1 R G 1 R 
L3= 2π +G 4 + 1  + + 

L 2 12 L 6 2 L 

Hence, 
⎡ ⎛ ⎞ ⎤ ( )2 

( )2 ( ) (
1 h λ 1 L G 1 L ⎣ ⎦⎠ +Epot (ξ′) =  πLR2 s λ 

+G ⎝1 +  +G 4 +  + + 1  
L 2 2 R 2 6 R 3 2R ( )2 [ ( ] 

2 = πLR2 s 1 
10λ + λ (L/R) + 24G + 6G (h/R) + 4G (L/R)

L 12 ( )2 [ 
2 = πLR2 s 1 

λ (10 + (L/R)) + 2G 12 + 3 (h/R) + 2 (L/R)
L 12 

This potential energy is greater or equal than the solution potential energy: 

Epot (ξ) ≤ Epot (ξ′) 
1 1 dF ( )2 [ 
Fs  = s 2 ≤ πLR2 s 1 

λ (10 + (L/R)) + 2G 12 + 3 (h/R)2 + 2 (L/R)
2 2 ds L 12 

The previous inequality allows us to determine an upper bound for the indentation stiffness, 

( )+ [ ( ( ) ) ( ( ) ( ) )]
dF dF 1 R R R 2≤ = πR λ 10 + 1  + 2G 12 + 3  (h/R) + 2  
ds ds 6 L L L 

Remarks: 

3. If we use the solution, 
dF 2 √ 

= √ AM = 2RM 
ds π 

we obtain the sought upper bound of the indentation stiffness: 
[ ( ( ) ) ( ( ) ( ) )]

π R R R 
M +M ≤ = λ 10 + 1  + 2G 12 + 3  (h/R)2 + 2  

12 L L L 

4. Using M = E/ (1− ν2), we obtain an upper bound for L/R: 

L π 14ν2 − 26ν + 12 + 3 (h/R)2 (2ν2 − 3ν + 1)  
≤ 

R 12− 2π − 3πν2 − 24ν + 5πν 
6 
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For ν = 0, we  have:  

L 
R 
≤ 
π 
( 
12 + 3 h

2 

R2 

) 

12− 2π 

That is for h/R = 0...1, L/R ≤ 6.6...8.2. It is also useful to note that L/R → ∞ for 
ν = 0.454 57 (which clearly shows some limitations of the solution). 

5.	 It would now be appropriate to complement the upper bound approach with a lower 
bound solution. 
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